

# Geotechnical and Contamination Services Intrusive Geotechnical Investigation (IGI) for New Primary School at Wilton Junction

Prepared for





| Project Name | New primary school at Wilton Junction                          |
|--------------|----------------------------------------------------------------|
| Report Title | Intrusive Geotechnical Investigation (Geotechnical)            |
| File Name    | IGI_Geotechnical_GG11529.001_Wilton Junction NEW PS_Rev2_Final |

| School Name         | Wilton Junction New<br>Primary School  | Consultancy<br>Name | Green Geotechnics Pty Ltd |
|---------------------|----------------------------------------|---------------------|---------------------------|
| School ID<br>Number | ΝΑ                                     | Report Status       | Final                     |
| School Address      | 200 Fairway Drive, Wilton,<br>NSW 2571 | Report Date:        | 21 February 2025          |
| School Region       | Sydney Metro                           | Contract<br>Number: | DDWO05924/24              |

# **Report Information**

| Author            | Matthew Green                       |
|-------------------|-------------------------------------|
| Company Name      | Green Geotechnics Pty Limited       |
| Contact Details   | matt@greengeo.com.au / 0477 779 684 |
| Report Version    | B – Final Revision 2                |
| Report Date       | 21 February 2025                    |
| Project Reference | GG11529.001                         |

# **Document History**

| lssue<br>Date | Status                           | Comment/Description                     | Author | Reviewer | Approved |
|---------------|----------------------------------|-----------------------------------------|--------|----------|----------|
| 07/06/24      | Draft                            | Intrusive Geotechnical<br>Investigation | MG     | JK       | M.Green  |
| 13/6/24       | <b>/6/24</b> Final Intrusive Geo |                                         | MG     | JK       | M.Green  |
| 04/02/25      | Final<br>Revision 1              | Intrusive Geotechnical<br>Investigation | MG     | JK       | M.Green  |
|               |                                  | Intrusive Geotechnical<br>Investigation | MG     | JK       | M.Green  |

# Table of Contents

| 1. | EX   | ECUTIVE SUMMARY                              | 1  |
|----|------|----------------------------------------------|----|
| 2. | IN   | TRODUCTION                                   | 2  |
| 3. | IN   | VESTIGATION PROCEDURE                        | 3  |
|    | 3.1  | Fieldwork Details                            | 3  |
|    | 3.2  | Laboratory Testing                           | 4  |
| 4. | RE   | SULTS OF INVESTIGATION                       | 5  |
|    | 4.1  | Site Description                             | 5  |
|    | 4.2  | Regional Geology & Subsurface Conditions     | 6  |
| 5. | GE   | OTECHNICAL RECOMMENDATIONS                   | 8  |
|    | 5.1  | Site Classification to AS2870                | 8  |
|    | 5.2  | Foundation Design                            | 8  |
|    | 5.3  | Site Classification to AS1170.4 (Earthquake) | 10 |
|    | 5.4  | Mine Subsidence                              | 10 |
|    | 5.5  | Acid Sulfate Soils                           | 10 |
|    | 5.6  | Design CBR Value                             | 10 |
|    | 5.7  | Bulk Excavation and Vibration Control        | 10 |
|    | 5.8  | Safe Batter Slopes                           | 11 |
|    | 5.9  | Retaining Wall Design                        | 11 |
|    | 5.10 | Site Preparation and re-grading              | 12 |
|    | 5.11 | Exposure Classification to AS2870 & AS2159   | 12 |
| 6. | FU   | IRTHER GEOTECHNICAL INPUT                    | 13 |
| 7. | MI   | ITIGATION MEASURES                           | 14 |
| 8. | GE   | ENERAL RECOMMENDATIONS                       | 15 |

#### FIGURES

FIGURE 11529.001A – Site Location

FIGURE 11529.001B – Site Plan and Borehole Locations

FIGURE 11529.001C – Site Photographs

FIGURE 11529.001D – Mine Subsidence Mapping



#### APPENDICIES

- Appendix A Borehole Logs, Core Photographs & Point Load Index Test Results
- Appendix B Laboratory Test Results
- Appendix C CSIRO Guideline
- Appendix D Mine Subsidence Guideline 8

## **Acronyms and Abbreviations**

The following acronyms are used in this report.

| Acronym | Description                                   |
|---------|-----------------------------------------------|
| AMC     | Abnormal Moisture Conditions                  |
| AHD     | Australian Height Datum                       |
| ARR     | Average Risk Rating                           |
| CBR     | California Bearing Ratio                      |
| GITA    | Geotechnical Inspection and Testing Authority |
| GPS     | Global Positioning System                     |
| На      | Hectare                                       |
| Km      | Kilometre                                     |
| kPa     | Kilopascals                                   |
| MPa     | Megapascals                                   |
| NSW     | New South Wales                               |
| RL      | Reduced Level                                 |
| RQD     | Rock Quality Designation                      |
| SINSW   | Schools Infrastructure New South Wales        |
| SPT     | Standard Penetration Test                     |
| TCR     | Total Core Recovery                           |



## 1. **EXECUTIVE SUMMARY**

This report presents the results of an Intrusive Geotechnical Investigation (IGI) undertaken by Green Geotechnics Pty Limited for the construction of proposed new Primary School at 200 Fairway Drive, Wilton, NSW 2571 (the Site). Based on the subsurface conditions encountered, the subject site is considered suitable for the proposed construction provided that the recommendations presented in this report are complied with. A summary of the critical recommendations is included below:

- The site is underlain by a shallow layer of topsoil extending to depths of 0.2 to 0.3 metres overlying residual clayey soils and weathered to fresh shale, siltstone and sandstone bedrock.
- Depending on the structural loads, foundations for the new structures may be constructed in either the upper stiff residual soils, or transferred to the underlying bedrock.
- The overlying residual soils are reactive. Reactive clays are sensitive to changes in moisture, and therefore consideration must be given to appropriate site drainage both during construction and longer term.
- Groundwater was not encountered during auger drilling of the boreholes and therefore we do not foresee the requirements for construction stage or long term dewatering.
- The site is not within an Acid Sulfate Soils Area.
- The site is located within the Wilton Mine Subsidence District. Guideline 8 applies to any surface development on the site. No restrictions apply to suites under Guideline 8.
- Recommendations have been provided herein for general site preparation and regrading, the design of foundations and retaining walls, bulk earthworks and batter slopes, slabs-on-grade, earthquake loads, soil aggressivity and pavement construction.

NOTE: The scope of services provided within this report is limited to the assessment of the subsurface conditions at the subject site. The executive summary is provided solely for purposes of overview and is not intended to replace the report of which it is part and should not be used separately from the report.



## 2. INTRODUCTION

This Intrusive Geotechnical Investigation (IGI) report has been prepared to support a Review of Environmental Factors (REF) for the NSW Department of Education (DoE) for the construction and operation of the new primary school at Wilton Junction (the activity).

The purpose of the REF is to assess the potential environmental impacts of the activity prescribed by State Environmental Planning Policy (Transport and Infrastructure) 2021 (T&I SEPP) as "development permitted without consent" on land carried out by or on behalf of a public authority under Part 5 of the Environmental Planning and Assessment Act 1979 (EP&A Act). The activity is to be undertaken pursuant to Chapter 3, Part 3.4, Section 3.37A of the T&I SEPP.

This document has been prepared in accordance with the Guidelines for Division 5.1 assessments (the Guidelines) by the Department of Planning, Housing and Infrastructure (DPHI) as well as the Addendum Division 5.1 guidelines for schools.

The proposed activity comprises the construction and operation of a new primary school at Wilton Junction which will accommodate up to 552 students and 35 staff. Additionally, the proposal includes an integrated pre-school which will capacity for up to 60 students and 7 staff. In total, the new school will support up to 612 students and 42 staff.

The new school includes general and support learning spaces, a library, administrative areas and a staff hub. Core facilities include a standalone school hall and canteen, two carparks and a sports court.

Specifically, this proposal includes the following:

- Construction of a 3-storey learning hub which includes:
  - o 24x General Learning Spaces
  - 3 x Support Learning Spaces
  - $\circ$   $\;$  Staff hub including administrative areas and library
  - Integrated public pre-school.
- Standalone hall and COLA with outside of school hours care (OSHC).
- Associated landscaping including sports court and separate outdoor play space for the preschool.
- Associated site utilities and services including installation of new 1500 kVA padmount substation and a new main switchboard.
- Main Car park to the south of the site with 33 car spaces (including one accessible space).
- Separate car park for preschool located to the north of the school with 18 spaces (including one accessible space).
- Main school pedestrian entrance proposed off Road 14.
- Earthworks.



The proposed activity will require bulk earthworks for site preparation and re-grading, however, does not include any basement levels or below ground structures. Column loads from the three storey buildings are in the order of 2,000kN.

The purpose of the investigation was to:

- assess the subsurface conditions over the site,
- provide a Site Classification to AS2870,
- provide a subsoil classification in accordance with AS1170.4,
- comment on the presence of Acid Sulfate Soils,
- determine if the site is located within a Mine Subsidence District,
- provide recommendations regarding the appropriate foundation system for the site including design parameters,
- comment on excavation conditions and vibration control during bulk earthworks,
- provide a design subgrade CBR value for the design of pavements and car parking,
- provide parameters for the construction of retaining walls,
- provide recommendations for site preparation and re-grading including an earthworks specification, and
- provide an exposure classification in accordance with AS2159 and AS2870.

## 3. INVESTIGATION PROCEDURE

#### 3.1 Fieldwork Details

The fieldwork was carried out over the period Monday 27 May to Thursday 30 May 2024 and comprised a detailed site walkover together with the drilling of fifteen (15) boreholes numbered BH1 to BH15.

BH1 to BH7 were drilled to practical refusal using rotary solid flight augers attached to a utility mounted Christie Engineering drilling rig, owned and operated by Green Geotecnics. BH8 to BH15 were drilled using a Hanjin DB8 track mounted drilling rig supplied and operated by BG Drilling. BH8 to BH15 were commenced using rotary solid flight augers until at least low strength bedrock was encountered.



The boreholes were then advanced into the underlying bedrock to the target depths using NMLC sized diamond coring equipment with a water/polymer flush.

The recovered rock core from BH8 to BH15 was logged, boxed and photographed. To assist in assessing rock strengths the recovered rock core was Point Load Index tested, with tests undertaken at a nominal depth interval of 1 metre.

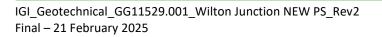
Groundwater observations were made in all boreholes during auger drilling. No longer term groundwater monitoring was carried out.

The borehole locations were nominated by the project structural engineer. The surface reduced levels of the boreholes were determined using an RTK GNSS Global Positioning System (GPS) with a 3 dimensional accuracy of +/-100mm. The datum of the levels is Australian Height Datum (AHD).

The approximate site location is shown in the attached Figure GG11529.001A. The borehole locations, as shown on Figure GG11529.001B, were determined using GPS. Photographs of the site indicating the borehole locations are provided in Figure GG11529.001C.

The fieldwork was completed in the full-time presence of our Senior and Principal Engineering Geologists who set out the boreholes, nominated the sampling and testing, and prepared the borehole logs. The logs which include the approximate surface reduced levels and groundwater observations together with photos of the rock core and Point Load Index test results, are attached to this report, together with a glossary of the terms and symbols used in the logs.

For further details of the investigation techniques adopted, reference should be made to the attached explanation notes.


Environmental and contamination testing of the soils was beyond the agreed scope of the works.

### 3.2 Laboratory Testing

In order to assist with determining the Site Classification, un-disturbed soil samples were obtained for shrink swell testing. Bulk disturbed samples were also collected to determine the subgrade California Bearing Ratio (CBR) value.

In order to assess the soils for their aggressiveness in accordance with AS2159 and AS2870, selected representative soil samples were tested to determine the following:

- pH,
- Sulphate Content (SO4),
- Chloride Content (CL), and
- Electrical Conductivity (EC).





The detailed test reports are provided in Appendix B and are further discussed in Section 5 of this report.

## 4. **RESULTS OF INVESTIGATION**

#### 4.1 Site Description

The current street address is 200 Fairway Drive, Wilton, 2571, NSW. The site forms part of the northern portion of Lot 1063 in Deposited Plan 1289197 that was previously subdivided by Landcom. The site is approximately 3.4ha hectares in size and is located within Wilton Junction which is part of the North Wilton Precinct.

As a result of precinct wide rezonings, the surrounding locality is transitioning from a semirural residential area to a highly urbanised area with new low to medium density residential development with supporting services. North Wilton Precinct is approximately 85km southwest of the Sydney CBD, 30km north-west of Wollongong and 30km southwest of Campbelltown-Macarthur Strategic Centre. The precinct is located on the interchange with the Hume Highway, which connects the Southern Highlands with the Sydney metropolitan region to the northeast and Canberra to the south-west.

The proposed school site does not currently have road access, however Landcom is expected to deliver the road network and surrounding public domain network in accordance with DA/2022/1279/1. Proposed Road 14 located on the eastern boundary of the site will ultimately provide future access to the site. The site contains several patches of remnant native vegetation particularly within the northern portion of the site. The central part of the site has been predominantly cleared and consists of grassland. An aerial photograph of the site is provided in Figure 1

The ground surface slopes to the north east with a fall of approximately 8 metres, from Reduced Level (RL) 171 metres AHD in the vicinity of BH1 to RL 163 metres AHD in the vicinity of BH7.

To the north, east and west are further open grassed paddocks and to the south is the underconstruction Wilton North residential subdivision. The proposed subdivision works will include the construction of local and sub-arterial roads which will eventually border the site to the north, east and west.

There are no open water courses or dams on the site, however there are farm dams to the north east and a tree lined overland flow channel to the east which is fed by a temporary water quality basin associated with the subdivision works.



### 4.2 Regional Geology & Subsurface Conditions

The 1:100,000 series geological map of the Wollongong – Port Hacking region (Geological Survey of NSW, Geological Series Sheet 9029-9129) indicates that the site is underlain by Triassic Age bedrock belonging to the Ashfield Shale formation of the Wianamatta Group. Bedrock within this formation comprises shale and laminite. To the east of the site is a geological boundary with Triassic Age bedrock belonging to the Hawkesbury Sandstone formation. Bedrock within the Hawkesbury Sandstone formation comprises fine to medium grained quartz sandstone.

For the development of a site-specific geotechnical model, the observed subsurface conditions from the boreholes have been grouped into five (5) geotechnical units which are summarised below in Table 3.1.

| Unit | Material Type                          | Depth to<br>top of Layer<br>(m)* | Depth to<br>base of<br>Layer (m)* | Material Description                                                                                                                                                                                |
|------|----------------------------------------|----------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Topsoil                                | Surface                          | 0.2 – 0.3m                        | Silty Clay, dark brown, low and medium<br>plasticity with organics and a trace of fine<br>gravel. Some sandstone boulders on site. Moist                                                            |
| 2    | Firm to Stiff Residual<br>Clays        | 0.2 – 0.3m                       | 0.6 – 0.8m                        | Silty clays, orange to red brown and grey brown,<br>firm to stiff and medium and high plasticity with<br>ironstone gravel. Moist                                                                    |
| 3    | Stiff and Very Stiff<br>Residual Clays | 0.6 – 0.8m                       | 1.05 – 1.5m                       | Silty clays and gravelly silty clays, orange to grey<br>and red brown, stiff becoming very stiff and<br>medium with ironstone and shale gravel. Moist<br>becoming dry with depth.                   |
| 4    | Class 5 Shale and<br>Sandstone Bedrock | 1.05 – 1.5m                      | 1.8 – 3.9m                        | Extremely weathered extremely low to very low<br>strength shale and sandstone bedrock. Fine<br>grained with higher strength bands of iron<br>indurated rock. Generally not core drilled.            |
| 4    | Class 5 Shale and<br>Sandstone Bedrock | 1.8 – 3.9m                       | 2.7 – 4.8m                        | Highly and moderately weathered shale,<br>siltstone and sandstone bedrock, generally fine<br>grained and orange to grey and dark grey in<br>colour, frequent clay seams and bedding<br>partings.    |
| 5    | Class 3 Sandstone<br>Bedrock*          | 2.7 – 4.8m                       | Unknown                           | Slightly weathered to fresh medium and mostly<br>high strength fine to medium grained sandstone<br>bedrock with occasional shale interbeds, widely<br>spaced seams and lenses of coarser materials. |

#### TABLE 4.1 – Summary of Subsurface Conditions

\*BH8 to BH15 only.



| Borehole ID | Depth of Rock Classification (m) |            |             |  |  |  |  |
|-------------|----------------------------------|------------|-------------|--|--|--|--|
| Borenoie ID | Class 5                          | Class 4    | Class 3     |  |  |  |  |
| 1           | 1.1 – 2.6m                       | >2.6m      | -           |  |  |  |  |
| 2           | 1.2 – 3.0m                       | >3.0m      | -           |  |  |  |  |
| 3           | 1.2 – 2.5m                       | >2.5m      | -           |  |  |  |  |
| 4           | 1.4 – 2.5m                       | >2.5m      | -           |  |  |  |  |
| 5           | 1.3 – 3.2m                       | >3.2m      | -           |  |  |  |  |
| 6           | 1.3 – 1.8m                       | >1.8m      | -           |  |  |  |  |
| 7           | 1.5 – 2.5m                       | >2.5m      | -           |  |  |  |  |
| 8           | 1.05 – 1.8m                      | 1.8 – 4.1m | 4.1 – 8.7m  |  |  |  |  |
| 9           | 1.4 – 2.4m                       | 2.4 – 4.8m | 4.8 – 9.0m  |  |  |  |  |
| 10          | 1.2 – 2.3m                       | 2.3 – 2.7m | 2.7 – 8.9m  |  |  |  |  |
| 11          | 0.8 – 1.7m                       | 1.7 – 2.9m | 2.9 – 8.0m  |  |  |  |  |
| 12          | 1.2 – 2.0m                       | 2.0 – 3.3m | 3.3 – 8.8m  |  |  |  |  |
| 13          | 1.2 – 1.8m                       | 1.8 – 3.3m | 3.3 – 8.0m  |  |  |  |  |
| 14          | 1.2 – 3.9m                       | 3.9 – 4.4m | 4.4 – 8.5m  |  |  |  |  |
| 15          | 1.2 – 1.7m                       | 1.7 – 1.9m | 1.9 – 8.55m |  |  |  |  |

#### TABLE 4.2 – Summary of Bedrock Classification

Groundwater seepage was not observed during auger drilling of the boreholes.



## 5. **GEOTECHNICAL RECOMMENDATIONS**

Based on the results of the assessment, we consider the following to be the primary geotechnical considerations for the development:

- Construction of buildings on sites underlain by reactive clay soils,
- Site preparation for the construction of structures and pavements, and
- Foundation design for structural loads.

### 5.1 Site Classification to AS2870

To assist with determining the Site Classification, undisturbed soil samples were obtained for shrink swell testing. The results of the testing are summarised below in Table 5.1.

| Borehole ID | Sample Depth | Shrink Swell Index |
|-------------|--------------|--------------------|
| BH2         | 0.6 – 0.9m   | 1.7                |
| BH6         | 0.6 – 0.9m   | 2.0                |
| BH7         | 0.6 – 0.8m   | 2.2                |

TABLE 5.1 – Atterberg Limit Test and Shrink Swell Test Results

The classification has been prepared in accordance with the guidelines set out in the "Residential Slabs and Footings" Code, AS2870 – 2011.

Because there are large mature trees present on the site, abnormal moisture conditions (AMC) prevail at the subject site (Refer to Section 1.3.3 of AS2870).

Because of the AMC present, the site is classified a **Problem Site (P)**. However, provided the recommendations given below in Section 5.2 are adopted and footings are founded in at least firm to stiff clays the site may be re-classified as **Moderately Reactive (M)**.

### 5.2 Foundation Design

Structural loads from the buildings and structures should be founded on either the stiff residual clayey soils, or the underlying bedrock. The existing topsoil materials should not be relied upon for foundation support. Footings may also be founded in controlled engineered fill where the fill is placed in accordance with the recommendations given in Section 5.10 of this report.

The minimum depth of founding for shallow foundations must comply with AS2870-2011. The design of shallow foundations must also be undertaken in accordance with Appendix C and CH of AS2870 to account for the presence of trees. You may also wish to consider installing root barriers around the structures to protect buried service lines.



Foundation design parameters for the various units are provided in Table 5.2 below:

| Material                                           | Maximum /               | Allowable (Serviceability         | r) Values (kPa)               | Ultimate Strength Limit State Values<br>(kPa) |                                |                               |  |
|----------------------------------------------------|-------------------------|-----------------------------------|-------------------------------|-----------------------------------------------|--------------------------------|-------------------------------|--|
|                                                    | End Bearing<br>Pressure | Shaft Friction in<br>compression# | Shaft Friction<br>in tension* | End Bearing<br>Pressure                       | Shaft Friction in compression# | Shaft Friction<br>in tension* |  |
| Firm to Stiff<br>Natural Clay /<br>Engineered Fill | 100                     | 20                                | 10                            | 450                                           | 50                             | 25                            |  |
| Very Stiff<br>Natural Clay                         | 300                     | 20                                | 10                            | 750                                           | 50                             | 25                            |  |
| Class 5 Bedrock                                    | 700                     | 70                                | 35                            | 3,000                                         | 100                            | 50                            |  |
| Class 4 Bedrock                                    | 1,000                   | 1,000 100                         |                               | 4,000                                         | 210                            | 105                           |  |
| Class 3 Bedrock                                    | 3,500                   | 1,200                             | 600                           |                                               |                                |                               |  |

TABLE 5.2 – Foundation Design Parameters

# clean socket of roughness category R2 or better is assumed

In accordance with AS2159-2009 "Piling–Design and Installation", for limit state design, the ultimate geotechnical pile capacity shall be multiplied by a geotechnical reduction factor ( $\Phi$ g). This factor is derived from an Average Risk Rating (ARR) which considers geotechnical uncertainties, redundancy of the foundation system, construction supervision, and the quantity and type of pile testing (if any). Where testing is undertaken, or more comprehensive ground investigation is carried out, it may be possible to adopt a larger  $\Phi_g$  value that results in a more economical pile design. Further geotechnical advice will be required in consultation with the pile designer and piling contractor, to develop an appropriate  $\Phi_g$  value.

Settlements for piles socketed into rock are anticipated to be about 1% of the minimum footing dimension, based on serviceability parameters as per Table 5.2. Settlements of pad footings in soils are anticipated to be up to about 15mm where loading does not exceed the maximum allowable values.

All shallow footings should be poured with minimal delay (i.e. preferably on the same day of excavation) or the base of the footing should be protected by a concrete blinding layer after cleaning of loose spoil and inspection.

Conventional open hole bored cast in-situ piles are considered suitable for the site conditions. Drilling of rock sockets into the shale and sandstone bedrock will require the use of large excavators or piling rigs equipped with rock augers. Some limited groundwater inflow should be anticipated into the bored pile excavations. We expect any minor seepage to be controllable by conventional pumping methods. However, some contingency for pouring concrete by tremie methods should be allowed.

Piles embedded below a depth of 1.8 metres will be below the depth of seasonal moisture variation ( $H_s$ ), which is 1.8 metres for metropolitan Sydney. Founding below the depth of seasonal moisture variation will reduce any shrink swell effects on the base of the piles. To overcome soil shrinkage around the piles, we would recommend ignoring any adhesion within the upper "cracked zone" of the soil, which is generally taken as 0.5 ( $H_s$ ), or 0.9 metres.



Bored pile footings should be drilled, cleaned, inspected and poured with minimal delay, on the same day. Water should be prevented from ponding in the base of footings as this will tend to soften the foundation material, resulting in further excavation and cleaning being required.

The initial stages of footing excavation/drilling, particularly if bored piles are adopted, should be inspected by a geotechnical engineer/engineering geologist to ascertain that the recommended foundation material has been reached and to check initial assumptions about foundation conditions and possible variations that may occur between borehole locations. The need for further inspections can be assessed following the initial visit.

### 5.3 Site Classification to AS1170.4 (Earthquake)

The site sub-soil classification has been determined using AS1170.4-2007. The classification is based on the results of the borehole drilling. The depth of soil recorded in the subsurface is less than 3 metres in all locations, therefore the site is classified as a Rock Site ( $B_e$ ). An earthquake hazard factor (Z) of 0.08 applies to sites within the Sydney region.

### 5.4 Mine Subsidence

The site is located within the Wilton Mine Subsidence District under Guideline 8. No restrictions apply to suites under Guideline 8.

### 5.5 Acid Sulfate Soils

The site is located within an area where there are no known occurrences of Acid Sulfate Soils.

### 5.6 Design CBR Value

Based on the laboratory test results, a CBR value of 5% is recommended for the design of flexible and rigid pavements.

### 5.7 Bulk Excavation and Vibration Control

Based on the provided design documentation we understand that Building A will have a finished floor level of RL 165.8 metres AHD and Building B will have a finished floor level of RL 166.8 metres AHD. Based on existing topographical levels we anticipate excavations required for the school be limited in depth to no greater than 1.5 to 2.0 metres. Based on the results of the testing, bulk excavations to these depths of up to 2.0 metres are expected to encounter topsoil and residual clayey soils overlaying Class 5 and 4 bedrock. Excavators without assistance should be capable of excavating the soils, and large excavators fitted with ripping tynes or small to medium sized bulldozes would be capable of ripping any sandstone and shale bedrock to depths of up to 2.0 metres. We do not anticipate the need to use hydraulic rock hammers during the works.



Should excavations need to extend below a depth of 2.0 metres then a ripability assessment should be carried out. The assessment should be carried out following finalisation of the bulk earthworks design.

### 5.8 Safe Batter Slopes

In the short term, dry cut slopes should remain stable at an angle of 1(H) to 1(V). In the long term dry cut slopes formed at an angle of 2(H) to 1(V) should remain stable. Slopes cut at this angle would be subject to erosion unless protected by topsoil and diversion drains at the crest of the slopes. In order to use mowers to maintain cut slopes, an angle of 4(H) to 1(V) or flatter should be used.

### 5.9 Retaining Wall Design

When considering the design of any retaining walls, it will be necessary to allow for the loading from adjoining structures, any ground surface slope and the water table present.

A triangular stress distribution should be adopted for the design of cantilevered retaining walls. The lateral earth pressure for a cantilevered wall should be determined as a proportion of the vertical stress, as given in the following formula:

 $\sigma z = K z \gamma$ , where  $\sigma z =$  Horizontal pressure at depth z (kPa) K = Earth pressure coefficient z = Depth (m)  $\gamma =$  Unit weight of soil or rock (kN/m<sup>3</sup>)

Retaining walls may be designed using the parameters provided below in Table 5.3.

| Material                                  | Unit<br>Weight<br>(kN/m <sup>3</sup> | Earth Pressure Coefficient  |                              |                              | Poisson's | Effective<br>Angle of | Effective            | Elastic             |
|-------------------------------------------|--------------------------------------|-----------------------------|------------------------------|------------------------------|-----------|-----------------------|----------------------|---------------------|
| Unit                                      |                                      | Active<br>(K <sub>a</sub> ) | At Rest<br>(K <sub>o</sub> ) | Passive<br>(K <sub>p</sub> ) | Ratio     | Friction,<br>φ (Deg)  | Cohesion<br>C' (kPa) | Modulus<br>E' (MPa) |
| Topsoil                                   | 18                                   | 0.4                         | 0.65                         | -                            | 0.3       | 27                    | 0                    | 8                   |
| Controlled<br>Fill /<br>Residual<br>Clays | 19                                   | 0.37                        | 0.58                         | 2.5                          | 0.3       | 28                    | 5                    | 15                  |
| Class 5<br>Bedrock                        | 22                                   | 0.33                        | 0.5                          | 3.0                          | 0.3       | 30                    | 30                   | 80                  |
| Class 4<br>Bedrock                        | 22                                   | -                           | -                            | 3.5                          | 0.25      | 32                    | 50                   | 150                 |
| Class 3<br>Bedrock                        | 23                                   | -                           | -                            | 4.5                          | 0.2       | 40                    | 200                  | 500                 |

 TABLE 5.3 – Retaining Wall Design Parameters



The embedment of retaining walls can be used to achieve passive support. A triangular passive earth pressure distribution (increasing linearly with depth) may be assumed, starting from 0.5 m below excavation toe/base level.

Adequate drainage must be installed behind any retaining or below ground structures to prevent the build-up of hydrostatic forces.

#### 5.10 Site Preparation and re-grading

The performance of the slabs and pavements cannot be guaranteed unless the following procedures are adopted during the site earthworks:

- Remove any vegetation, topsoil and uncontrolled fill present. The exposed subgrade should be inspected by a geotechnical engineer who may wish to proof roll the exposed subgrade with a heavy, non-vibrating roller to detect soft or wet areas. These areas should be excavated to competent material and then filled as detailed below.
- Fill the site to the underside of slab or pavement level, in layers not exceeding 200 mm loose thickness, compacted to achieve a density ratio in the range of 98% to 102% of the Standard maximum dry density, at a moisture content within the range of -2% to +2% of the optimum for the material adopted.

The onsite silty clays can become un-trafficable during periods of wet weather.

Residual clayey soils and any bedrock won from the site during bulk excavation are considered suitable for re-use as engineered fill. However, any topsoil materials should be excluded from use as engineered fill. These materials may however be suitable for re-use for landscaping purposes, subject to the outcomes of environmental assessments being undertaken by others.

#### 5.11 Exposure Classification to AS2870 & AS2159

The aggressiveness or erosion potential of an environment in building materials, particularly concrete and steel is dependent on the levels of soil pH and the types of salts present, generally sulphates and chlorides. In order to determine the degree of aggressiveness, the test values obtained are compared to Tables 6.4.2 (C) and 6.5.2 (C) in AS2159 – 2009 Piling – Design and Installation and Tables 5.1 and 5.2 of AS2870-2011. In regard to the electrical conductivity, the laboratory test results have been multiplied by the appropriate factor to convert the results to EC<sub>e</sub>.

The soils on the site consist of high permeability sands above the groundwater table. Therefore, the soil conditions B are considered appropriate. The test results are summarised in Table 4.4 below.



| Sample | Location | Depth | рН  | ECe    | Sulfate | Chloride |                   |                   | Exposure<br>Classification |
|--------|----------|-------|-----|--------|---------|----------|-------------------|-------------------|----------------------------|
| ID     |          | (m)   |     | (dS/m) | (ppm)   | (ppm)    | Steel<br>Piles    | Concrete<br>Piles | AS2870                     |
| S1     | BH1      | 0.6m  | 6.2 | 0.2    | 30      | 30       | Non<br>Aggressive | Non<br>Aggressive | A1                         |
| S2     | BH2      | 1.5m  | 5.5 | 1.0    | 60      | 100      | Non<br>Aggressive | Mild              | A2                         |
| S3     | BH3      | 1.0m  | 5.8 | 0.3    | <10     | 20       | Non<br>Aggressive | Non<br>Aggressive | A1                         |
| S4     | BH4      | 0.2m  | 5.6 | 0.5    | 40      | 60       | Non<br>Aggressive | Non<br>Aggressive | A1                         |
| S5     | BH5      | 1.0m  | 5.9 | 0.4    | 90      | <10      | Non<br>Aggressive | Non<br>Aggressive | A1                         |
| S6     | BH6      | 0.3m  | 5.8 | 0.2    | 60      | 40       | Non<br>Aggressive | Non<br>Aggressive | A1                         |
| S7     | BH7      | 0.4m  | 6.5 | 0.3    | 50      | 10       | Non<br>Aggressive | Non<br>Aggressive | A1                         |
| S8     | BH8      | 0.5m  | 6.2 | 0.4    | 20      | 70       | Non<br>Aggressive | Non<br>Aggressive | A1                         |
| S9     | BH9      | 1.2m  | 5.6 | 0.5    | 40      | 150      | Non<br>Aggressive | Non<br>Aggressive | A1                         |
| S10    | BH15     | 0.6m  | 5.8 | 0.3    | 50      | <10      | Non<br>Aggressive | Non<br>Aggressive | A1                         |
| S11    | BH11     | 0.6m  | 6.0 | 0.3    | 60      | <10      | Non<br>Aggressive | Non<br>Aggressive | A1                         |
| S12    | BH12     | 0.7m  | 6.1 | 0.2    | 30      | 10       | Non<br>Aggressive | Non<br>Aggressive | A1                         |

Table 4.4 – Exposure Classification Summary Table

## 6. FURTHER GEOTECHNICAL INPUT

The following summarises the scope of further geotechnical work recommended within this report. For specific details reference should be made to the relevant sections of this report.

- Geotechnical supervision and testing by a Geotechnical Inspection and Testing Authority (GITA) during any bulk earthworks or detailed earthworks including the construction of pavements and subgrade areas and the backfilling of service trenches.
- Inspection of footing excavations to ascertain that the recommended foundation has been reached and to check initial assumptions regarding foundation conditions and possible variations that may occur.
- We also recommend that Green Geotechnics view the proposed earthworks and structural drawings in order to confirm they are within the guidelines of this report.



Nevertheless, it will be essential during excavation and construction works that progressive geotechnical inspections be commissioned to check initial assumptions about excavation and foundation conditions and possible variations that may occur between inspected and tested locations and to provide further relevant geotechnical advice.

## 7. MITIGATION MEASURES

| Project<br>Stage | Mitigation Measures                                                                                                                                                                                                                                                   | Reason for Mitigation Measures                                                                                                                                                                 | Section of<br>Report |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| D                | Foundations must be designed by a<br>qualified structural engineer as per the<br>recommendations given in Section 5.2<br>of this report and take into<br>consideration the general<br>recommendations given in Section 5                                              | To avoid uneconomical design and<br>ensure serviceability for built<br>structures. To ensure compliance with<br>AS2870 and AS2159.                                                             | 5.1, 5.2<br>and 5.3  |
| D                | Buried concrete and steel foundations<br>and structures must be designed to<br>withstand soil and groundwater<br>aggression (durability)                                                                                                                              | To prevent corrosion or degradation of<br>buried structures over its design life. To<br>ensure compliance with AS2870 and<br>AS2159                                                            | 5.11                 |
| D                | Pavements or trafficable areas area to<br>be designed in accordance with the<br>recommendations given in Section 5.6<br>and the earthworks specification is to<br>conform with the recommendations<br>given in Section 5.10.                                          | To ensure that pavements or trafficable<br>surfaces have adequate strength to<br>perform over their intended design life.<br>To ensure earthworks are carried out in<br>accordance with AS3798 | 5.6 & 5.10           |
| С                | Inspection of foundation excavations<br>during construction                                                                                                                                                                                                           | To ascertain that the recommended<br>foundation has been reached and to<br>check initial assumptions regarding<br>foundation conditions and possible<br>variations that may occur              | 6                    |
| С                | Geotechnical supervision and testing by<br>a Geotechnical Inspection and Testing<br>Authority (GITA) during any bulk<br>earthworks or detailed earthworks<br>including the construction of<br>pavements and subgrade areas and the<br>backfilling of service trenches | To ensure compliance with the project earthworks specification and AS3798                                                                                                                      | 6                    |
| о                | Compliance with CSIRO Foundation<br>Maintenance and Footing Performance<br>Guideline                                                                                                                                                                                  | To prevent future building cracking in reactive clay soils                                                                                                                                     | Appendix<br>C        |

#### Table 7.1 – Mitigation Measures



## 8. **GENERAL RECOMMENDATIONS**

The recommendations presented in this report are preliminary in nature. Prior to finalising any structural designs it is essential that intrusive investigations are carried out to confirm the actual ground conditions on the site.

The recommendations presented in this report include specific issues to be addressed during the construction phase of the project. In the event that any of the construction phase recommendations presented in this report are not implemented, the general recommendations may become inapplicable and Green Geotechnics accept no responsibility whatsoever for the performance of the structure where recommendations are not implemented in full and properly tested, inspected and documented.

Occasionally, the subsurface conditions may be found to be different (or may be interpreted to be different) from those expected. Variation can also occur with groundwater conditions, especially after climatic changes. If such differences appear to exist, we recommend that you immediately contact this office.

This report provides advice on geotechnical aspects for the proposed civil and structural design. As part of the documentation stage of this project, Contract Documents and Specifications may be prepared based on our report. However, there may be design features we are not aware of or have not commented on for a variety of reasons. The designers should satisfy themselves that all the necessary advice has been obtained. If required, we could be commissioned to review the geotechnical aspects of contract documents to confirm the intent of our recommendations has been correctly implemented.

This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose. If there is any change in the proposed development described in this report then all recommendations should be reviewed. Copyright in this report is the property of Green Geotechnics. We have used a degree of care, skill and diligence normally exercised by consulting engineers in similar circumstances and locality. No other warranty expressed or implied is made or intended. Subject to payment of all fees due for the investigation, the client alone shall have a licence to use this report. The report shall not be reproduced except in full.



# **REPORT INFORMATION**



#### Introduction

These notes have been provided to amplify Green Geotechnics report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

Green Geotechnics reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

#### Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

#### Groundwater

Where groundwater levels are measured in boreholes there are several limitations, namely:

- In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;
- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. The borehole must be flushed, and any water must be extracted from the hole if further water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

#### Reports

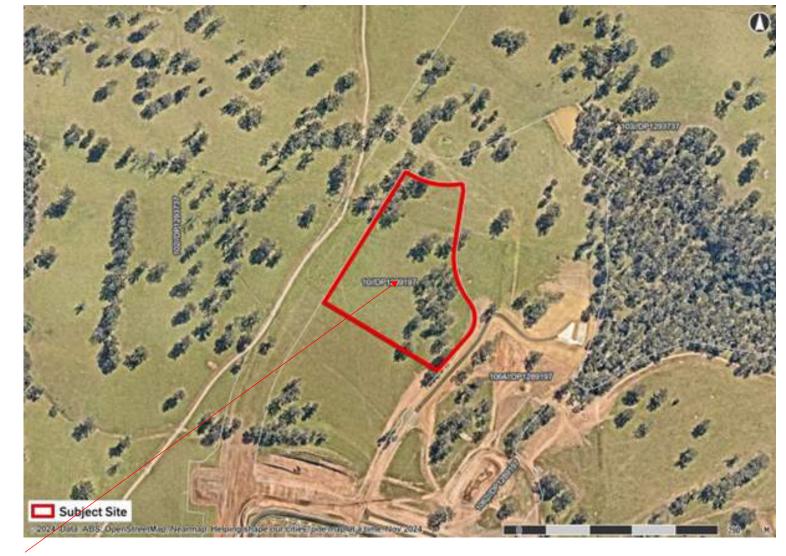
The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, Green Geotechnics will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, Green Geotechnics cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

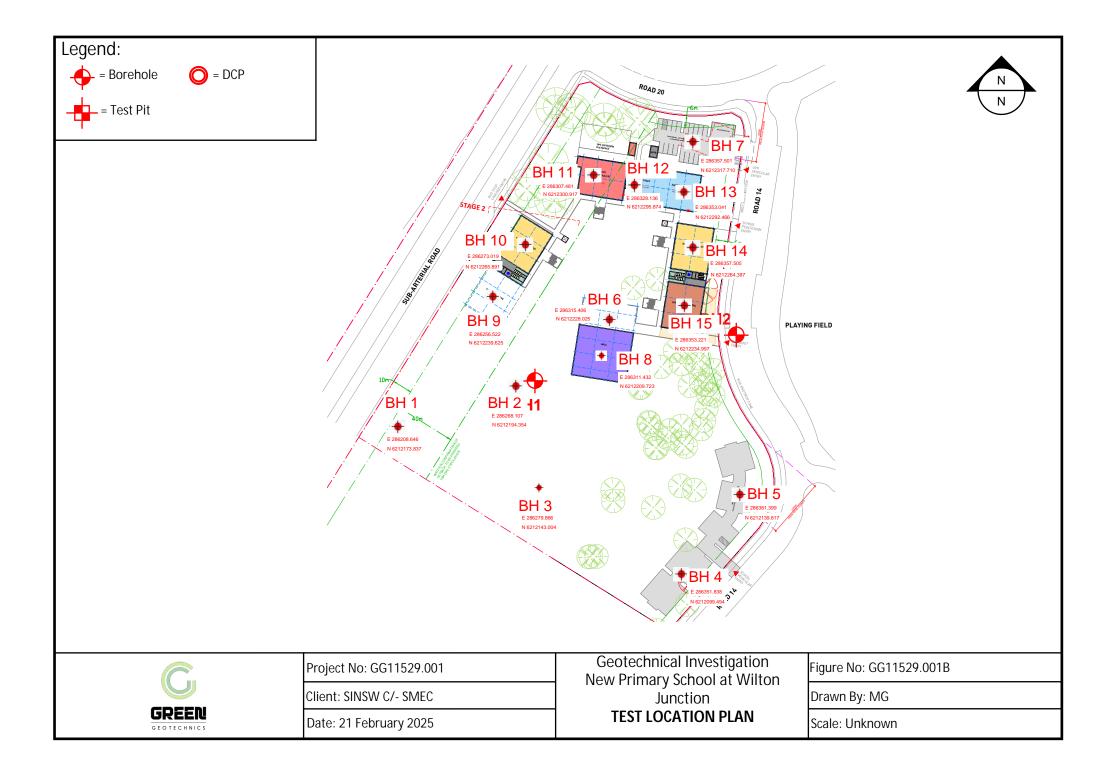
If these occur, Green Geotechnics will be pleased to assist with investigations or advice to resolve the matter.

#### Site Anomalies


In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, Green Geotechnics requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

#### Copyright

This report is the property of Green Geotechnics Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.


# **FIGURES**





Subject Site

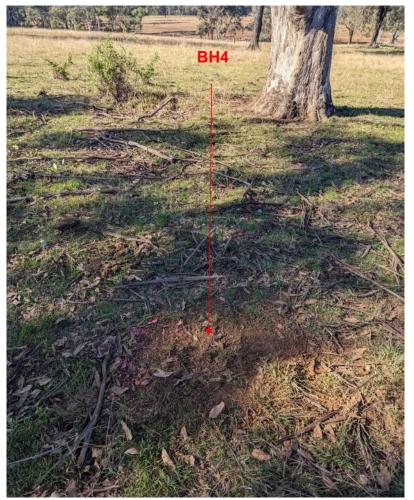
| C     | Project No: GG11529.001 | Geotechnical Investigation<br>New Primary School at Wilton | Figure No: GG11529.001A |
|-------|-------------------------|------------------------------------------------------------|-------------------------|
|       | Client: SINSW C/- SMEC  | Junction                                                   | Drawn By: MG            |
| GREEN | Date: 21 February 2025  | SITE LOCATION PLAN                                         | Scale: Unknown          |







Position of BH2


 Project No: GG11529.001
 Geotechnical Investigation
 Page: 1 of 6

 Client: SINSW C/- SMEC
 Junction
 SITE PHOTOGRAPHS
 Page: 1 of 6

Position of BH1



Position of BH3



Position of BH4

| Ĉ     | Project No: GG11529.001 | Geotechnical Investigation<br>New Primary School at Wilton | Page: 2 of 6 |
|-------|-------------------------|------------------------------------------------------------|--------------|
| Q     | Client: SINSW C/- SMEC  | Junction                                                   |              |
| GREEN | Date: 21 February 2025  | SITE PHOTOGRAPHS                                           |              |



Position of BH5



Position of BH6

| C           | Project No: GG11529.001 | Geotechnical Investigation               | Page: 3 of 6 |
|-------------|-------------------------|------------------------------------------|--------------|
|             | Client: SINSW C/- SMEC  | New Primary School at Wilton<br>Junction |              |
| GEOTECHNICS | Date: 21 February 2025  | SITE PHOTOGRAPHS                         |              |



Position of BH7

Position of BH8

Position of BH9

| Ĉ     | Project No: GG11529.001 | Geotechnical Investigation<br>New Primary School at Wilton | Page: 4 of 6 |
|-------|-------------------------|------------------------------------------------------------|--------------|
|       | Client: SINSW C/- SMEC  | Junction                                                   |              |
| GREEN | Date: 21 February 2025  | SITE PHOTOGRAPHS                                           |              |

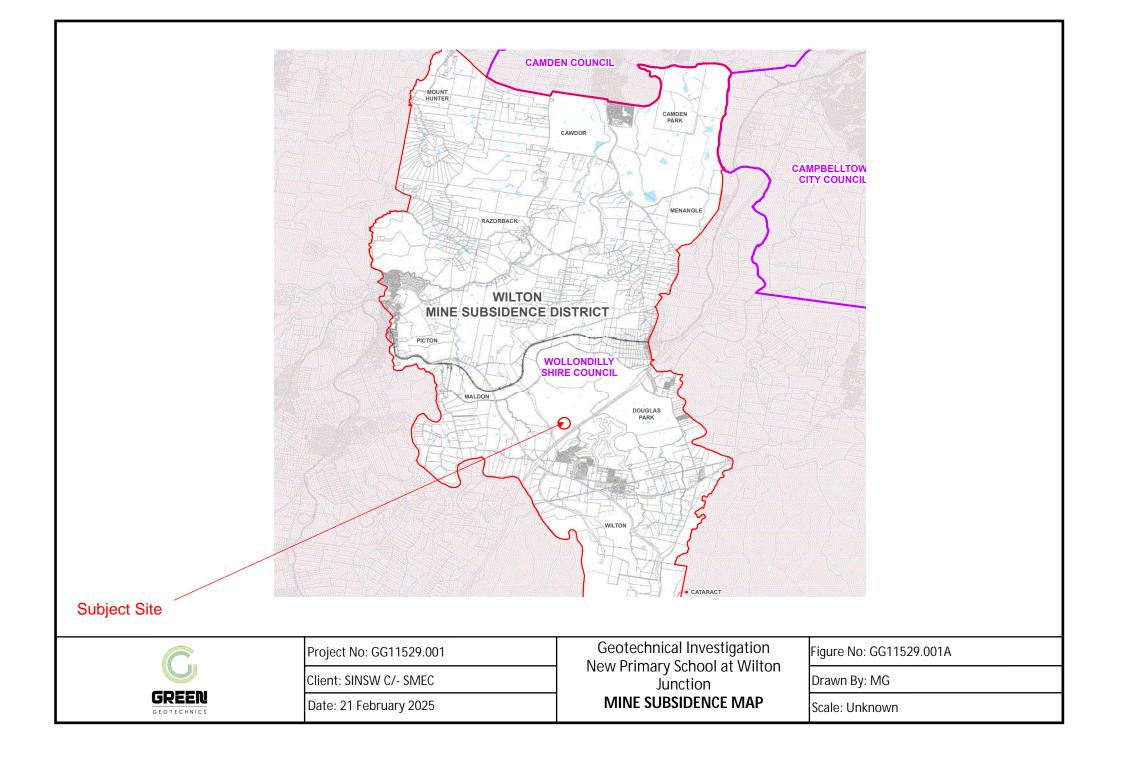


Position of BH10

Position of BH11

Position of BH12

| Ĉ     | Project No: GG11529.001 | Geotechnical Investigation<br>New Primary School at Wilton | Page: 5 of 6 |
|-------|-------------------------|------------------------------------------------------------|--------------|
|       | Client: SINSW C/- SMEC  | Junction                                                   |              |
| GREEN | Date: 21 February 2025  | SITE PHOTOGRAPHS                                           |              |




Position of BH13

Position of BH14

Position of BH15

| C     | Project No: GG11529.001 | Geotechnical Investigation<br>New Primary School at Wilton | Page: 6 of 6 |
|-------|-------------------------|------------------------------------------------------------|--------------|
|       | Client: SINSW C/- SMEC  | Junction                                                   |              |
| GREEN | Date: 21 February 2025  | SITE PHOTOGRAPHS                                           |              |



# APPENDIX A – BOREHOLE LOGS , CORE PHOTOS AND POINT LOAD TEST RESULTS





BH1

| Client:<br>Project N<br>Hole Loo<br>Hole Pos                                                                                                                            | ation:                                              | Wilton J                 | nnica<br>luncti                       | il Inv<br>ion S | estiga<br>School            | l, Wilte               | on              | Junction School<br>3 m N MGA2020-56                                                             | Commenced:<br>Completed:<br>Logged By:<br>Checked By: | 2<br>J                                                 |                       | 2024<br>2024                    |                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------|---------------------------------------|-----------------|-----------------------------|------------------------|-----------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|-----------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------|
| Drill Moo<br>Hole Dia                                                                                                                                                   |                                                     | 0                        | Chris<br>105 i                        |                 | Jtility                     |                        |                 | Inclination: -90°<br>Bearing:                                                                   | RL Surface:<br>Datum:                                 | 170.8<br>AHD                                           |                       |                                 | perator: JK                                                                                                    |
|                                                                                                                                                                         |                                                     | ng Informati             |                                       |                 |                             |                        |                 | Soil Desci                                                                                      |                                                       | AIID                                                   |                       | 0                               | Observations                                                                                                   |
| Support<br>Penetration                                                                                                                                                  | 5                                                   | Samples &<br>Field Tests | ecovery                               | RL<br>(m)       | Depth<br>(m)                | Graphic Log            | Group<br>Symbol | Material De<br>Fraction, Colour, St<br>Plasticity, Sensiti                                      | scription<br>ructure, Bedding,                        |                                                        | Moisture<br>Condition | Consistency<br>Relative Density | Structure and<br>Additional Observations                                                                       |
|                                                                                                                                                                         |                                                     |                          |                                       |                 |                             |                        | CI              | TOPSOIL Silty CLAY: med                                                                         | ium plasticity, dark bro                              | wn.                                                    | М                     |                                 | TOPSOIL                                                                                                        |
|                                                                                                                                                                         |                                                     | 0.60m                    |                                       |                 | -                           |                        | CI<br>/CH       | Silty CLAY: medium to high<br>pale grey.                                                        | n plasticity, orange bro                              | wn with                                                | ו<br>M                | F to<br>St                      | RESIDUAL SOIL                                                                                                  |
|                                                                                                                                                                         |                                                     | ).70m                    | $\square$                             | 169.8           | -                           |                        | CI<br>/CH       | 0.80m<br>Silty CLAY: medium to high<br>orange brown, trace of sha                               |                                                       |                                                        | М                     | VSt                             |                                                                                                                |
|                                                                                                                                                                         | <br> <br> <br>                                      |                          |                                       | 16              | -                           | × -                    | •               | 1.10m weathered shale).<br>SHALE: dark grey with pale<br>Estimate very low strength             | e grey, with clay seams<br>(Class 5).                 |                                                        | <u>M / D</u>          |                                 | ROCK                                                                                                           |
|                                                                                                                                                                         |                                                     |                          |                                       | 168.8           | -<br>2—                     |                        |                 |                                                                                                 |                                                       |                                                        | D                     |                                 |                                                                                                                |
|                                                                                                                                                                         | i I                                                 |                          |                                       |                 |                             |                        |                 | <sup>2.60m</sup><br>Hole Terminated at 2.60 m<br>Refusal in weathered shale                     |                                                       |                                                        |                       |                                 |                                                                                                                |
|                                                                                                                                                                         | <br> <br> <br> <br>                                 |                          |                                       | 167.8           | 3—                          |                        |                 |                                                                                                 |                                                       |                                                        |                       |                                 |                                                                                                                |
|                                                                                                                                                                         |                                                     |                          |                                       | 166.8           | -<br>4—                     |                        |                 |                                                                                                 |                                                       |                                                        |                       |                                 |                                                                                                                |
|                                                                                                                                                                         |                                                     |                          |                                       | 165.8           |                             |                        |                 |                                                                                                 |                                                       |                                                        |                       |                                 |                                                                                                                |
| III           III           III           III           III           IIII           IIII           IIII           IIIII           IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | hod<br>er Screw<br>er V Bit<br>er Tungs<br>bide Bit | /ing N                   | etratio<br>o resis<br>rangin<br>refus | stanc<br>ng to  | [                           | ⊻ Le<br>> Infi<br>⊲ Pa | rtial Los       | SPT - Standard Penel<br>SPT - Standard Penel<br>SPP - Pocket Penetro                            | mple D<br>ble M<br>tration Test W                     | isture<br>- Dry<br>- Moi:<br>- Wet<br>- Moi:<br>- Plas | st                    |                                 | <u>Consistency/Relative Dens</u><br>VS - Very Soft<br>S - Soft<br>F - Firm<br>ent VSt - Very Stiff<br>H - Hard |
| RR - Rock Roller<br>WB- Washbore<br>C - Casing<br>C - Casing<br>C - Casing<br>C - Casing                                                                                |                                                     |                          |                                       |                 | Log/Co<br>recove<br>ites ma | ore Lo<br>red (ha      |                 | Loss<br><u>Classification S</u><br><u>and Soil Descr</u><br>Based on Unifit<br>Classification S | LL<br>i <u>ymbols</u><br>ed Soil                      | - Liqu                                                 | uid Lir               | nit                             | Fr - Friable<br>VL - Very Loose<br>L - Loose<br>MD - Medium Dense<br>D - Dense<br>VD - Very Dense              |



Borehole No.

BH2

|        | <b>ng</b> i<br>Clier |                         | erin                  | Ig Log -                 |                |           |              |                      |                 |                                                            | Project No.:<br>Commenced: |                |                       | 1529.<br>2024                   | 001                                         |
|--------|----------------------|-------------------------|-----------------------|--------------------------|----------------|-----------|--------------|----------------------|-----------------|------------------------------------------------------------|----------------------------|----------------|-----------------------|---------------------------------|---------------------------------------------|
|        |                      | ect Na                  | ame:                  | Geote                    | chnic          | cal Inv   | vestiga      |                      |                 | Junction School                                            | Completed:                 | 2              | 27/5/2                |                                 |                                             |
|        |                      | Loca<br>Posit           |                       |                          |                |           |              |                      |                 | 4 m N MGA2020-56                                           | Logged By:<br>Checked By:  |                | IK<br>MG              |                                 |                                             |
|        |                      |                         |                       | d Mounting:              |                |           | Utility      |                      | 2104            | Inclination: -90°                                          | RL Surface:                | 169.2          |                       |                                 |                                             |
|        |                      | Diam                    |                       | 0                        |                | 5 mm      | Ounty        |                      |                 | Bearing:                                                   | Datum:                     | AHD            |                       |                                 | perator: JK                                 |
|        |                      |                         | Drill                 | ing Informa              | ntion          |           |              |                      |                 | Soil Desc                                                  | ription                    |                |                       |                                 | Observations                                |
| Method | Support              | Penetration             | Groundwater<br>Levels | Samples 8<br>Field Tests |                | RL<br>(m) | Depth<br>(m) | Graphic Log          | Group<br>Symbol | Material De<br>Fraction, Colour, St<br>Plasticity, Sensiti | ructure, Bedding,          |                | Moisture<br>Condition | Consistency<br>Relative Density | Structure and<br>Additional Observations    |
|        |                      |                         |                       |                          | +              |           |              | X                    | CI              | TOPSOIL Silty CLAY: med                                    | ium plasticity, dark bro   | wn.            | м                     |                                 | TOPSOIL                                     |
|        |                      |                         |                       |                          |                |           | -            |                      | CI              | 0.20m<br>Silty CLAY: medium to high                        | n plasticity, orange bro   | wn with        | h                     | F to                            | RESIDUAL SOIL                               |
|        |                      |                         |                       | 0.60m                    |                |           | -            | ^<br>                | /CH             | pale grey.                                                 |                            |                | м                     | St                              |                                             |
|        |                      |                         |                       | D-U50                    |                |           | -            | ×<br>×               |                 | 0.90m                                                      |                            |                | 171                   | St                              |                                             |
|        |                      |                         |                       | 0.90m                    |                | 168.2     | 1-           | ×                    | CI<br>/CH       | Silty CLAY: medium to high<br>orange brown.                | n plasticity, pale grey w  | vith           | м                     | VSt                             |                                             |
|        |                      |                         |                       |                          |                |           | -            |                      |                 | 1.20m<br>SHALE: pale grey with ora<br>with clay seams.     | nge brown and dark gr      | еу,            |                       |                                 | ROCK                                        |
|        |                      |                         |                       | 1.50m<br>D-S2<br>1.60m   |                |           | -            |                      |                 |                                                            |                            |                | D                     |                                 |                                             |
|        |                      |                         |                       |                          |                |           | -            |                      |                 |                                                            |                            |                |                       |                                 |                                             |
|        |                      |                         |                       |                          |                | <br>167.2 | 2-           |                      |                 | Estimate very low strength                                 | (Class 5)                  |                |                       |                                 |                                             |
|        |                      |                         | 2                     |                          |                | -         | -            |                      | -               | Loundle very low strength                                  | (01235 0).                 |                |                       |                                 |                                             |
|        |                      |                         |                       |                          |                |           | -            |                      | -               |                                                            |                            |                | M/D                   |                                 |                                             |
|        |                      |                         |                       |                          |                |           | -            |                      |                 |                                                            |                            |                |                       |                                 |                                             |
|        |                      |                         |                       |                          |                | 2         | -            |                      |                 |                                                            |                            |                |                       |                                 |                                             |
|        |                      | <i>444</i>              |                       |                          |                | 166.2     | 3-           |                      |                 | 3.00m<br>Hole Terminated at 3.00 m                         |                            |                | D                     |                                 |                                             |
|        |                      |                         |                       |                          |                |           | -            | -                    |                 | Refusal in weathered shale                                 | e (Class 4)                |                |                       |                                 |                                             |
|        |                      |                         |                       |                          |                |           | -            | -                    |                 |                                                            |                            |                |                       |                                 |                                             |
|        |                      |                         |                       |                          |                |           | -            |                      |                 |                                                            |                            |                |                       |                                 |                                             |
|        |                      |                         |                       |                          |                | 5.2       | -            |                      |                 |                                                            |                            |                |                       |                                 |                                             |
|        |                      |                         |                       |                          |                | 165.      | 4            |                      |                 |                                                            |                            |                |                       |                                 |                                             |
|        |                      |                         |                       |                          |                |           |              |                      |                 |                                                            |                            |                |                       |                                 |                                             |
|        |                      |                         |                       |                          |                |           |              |                      |                 |                                                            |                            |                |                       |                                 |                                             |
|        |                      |                         |                       |                          |                |           | -            | -                    |                 |                                                            |                            |                |                       |                                 |                                             |
|        |                      |                         |                       |                          |                | <br>164.2 | 5-           | -                    |                 |                                                            |                            |                |                       |                                 |                                             |
|        |                      |                         |                       |                          |                | 7         | -            | -                    |                 |                                                            |                            |                |                       |                                 |                                             |
|        |                      |                         |                       |                          |                |           | -            | -                    |                 |                                                            |                            |                |                       |                                 |                                             |
|        |                      |                         |                       |                          |                |           | -            |                      |                 |                                                            |                            |                |                       |                                 |                                             |
|        |                      |                         |                       |                          |                |           | -            |                      |                 |                                                            |                            |                |                       |                                 |                                             |
|        |                      | Metho                   | d<br>Dd               | <u>Pe</u>                | netra          | tion      |              | <u>v</u>             | Vater           | Samples and                                                | <u>Tests</u> <u>Mo</u>     | isture         | <u>Con</u> a          | lition                          | Consistency/Relative Dens                   |
| Α      | ٩D¥                  | Auger<br>Auger          | V Bit                 | wing                     | No re<br>rang  | sistano   |              | -                    | vel (Dat        | e) U - Undisturbed Sa<br>D - Disturbed Sam                 | mple D<br>ble M            | - Dry<br>- Moi | st                    |                                 | VS - Very Soft<br>S - Soft<br>F - Firm      |
| F      | RR -                 | Auger<br>Carbic<br>Rock | le Bit<br>Rolle       |                          |                | fusal     | -            | ⊲ Pa                 | rtial Los       |                                                            | meter w<br>PL              | - Moi          | sture<br>stic Li      | mit                             | ent VSt - Very Stiff<br>H - Hard            |
|        |                      | Washl                   | oore                  |                          | <br><u>G</u> i |           | Log/C        | ore Lo               |                 | Loss<br>Classification S                                   | LL                         | - Liqu         | uid Lir               | nit                             | Fr - Friable<br>VL - Very Loose             |
|        | С                    | <u>Supp</u><br>- Ca     |                       | -                        |                | indica    | ates ma      | ered (ha<br>aterial) | atching         | and Soil Descr<br>Based on Unifi                           | iptions                    |                |                       |                                 | L - Loose<br>MD - Medium Dense<br>D - Dense |
|        |                      |                         |                       | t                        |                | - Core    | IOSS         |                      |                 | Classification S                                           |                            |                |                       |                                 | D - Dense<br>VD - Very Dense                |



Borehole No.

BH3

| CI                                                                               | lien                  | ıt:                                                |                                  | SINSW                    | C/-           | SME                               | С            |                        |                 |                                                                              | Commenced:                                     | 27/5/                      | 2024                            |                                                                                                                |
|----------------------------------------------------------------------------------|-----------------------|----------------------------------------------------|----------------------------------|--------------------------|---------------|-----------------------------------|--------------|------------------------|-----------------|------------------------------------------------------------------------------|------------------------------------------------|----------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------|
|                                                                                  |                       | ect Na                                             | me:                              |                          |               |                                   | -            | tion: \                | Wilton          | Junction School                                                              |                                                | 27/5/                      |                                 |                                                                                                                |
|                                                                                  |                       | Loca                                               |                                  | Wilton .                 |               |                                   |              |                        |                 |                                                                              | Logged By:                                     | JK                         |                                 |                                                                                                                |
|                                                                                  |                       | Posit                                              |                                  |                          |               |                                   |              | E 621                  | 2143.0          | ) m N MGA2020-56                                                             | ,                                              | MG                         |                                 |                                                                                                                |
|                                                                                  |                       |                                                    |                                  | 0                        |               |                                   | Utility      |                        |                 | Inclination: -90°                                                            |                                                | .00 m                      |                                 |                                                                                                                |
| H                                                                                | ole                   | Diam                                               | eter:                            |                          | 105           | 5 mm                              |              |                        |                 | Bearing:                                                                     | Datum: AHI                                     | )                          | O                               | perator: JK<br>I                                                                                               |
|                                                                                  |                       |                                                    | Drilli                           | ing Informat             | ion           |                                   |              |                        |                 | Soil Descr                                                                   | iption                                         |                            |                                 | Observations                                                                                                   |
|                                                                                  | Support               | Penetration                                        | Groundwater<br>Levels            | Samples &<br>Field Tests | Recovery      | RL<br>(m)                         | Depth<br>(m) | Graphic Log            | Group<br>Symbol | Material De:<br>Fraction, Colour, Str<br>Plasticity, Sensitiv                | ucture, Bedding,                               | Moisture<br>Condition      | Consistency<br>Relative Density | Structure and<br>Additional Observations                                                                       |
| +                                                                                |                       |                                                    |                                  |                          |               |                                   |              | XX                     | CI              | TOPSOIL Silty CLAY: medi                                                     | um plasticity, dark brown.                     | м                          |                                 | TOPSOIL                                                                                                        |
|                                                                                  |                       |                                                    |                                  |                          |               |                                   | -            |                        | CI              | 0.20m<br>Silty CLAY: medium to high                                          | plasticity, orange brown w                     |                            | -                               | RESIDUAL SOIL                                                                                                  |
|                                                                                  |                       |                                                    |                                  |                          |               |                                   | -            | ×<br>×                 | /CH             | pale grey.                                                                   | ,                                              | м                          | F to<br>St                      |                                                                                                                |
|                                                                                  |                       |                                                    |                                  |                          |               | _                                 | -            | ×                      |                 | 0.90m                                                                        |                                                |                            | St                              |                                                                                                                |
|                                                                                  |                       |                                                    |                                  | 1.00m<br>D-S3            |               | 1<br>168.0                        | 1-           | <br>×                  | CI<br>/CH       | Silty CLAY: medium to high<br>orange brown.                                  | plasticity, pale grey with                     | м                          |                                 |                                                                                                                |
|                                                                                  |                       |                                                    |                                  | 1.10m                    | -             | -                                 | -            | x                      | ,011            | 1.30m                                                                        |                                                | M/C                        | VSt                             |                                                                                                                |
|                                                                                  |                       |                                                    |                                  |                          |               |                                   | -            |                        |                 | SHALE: dark grey with pale<br>with clay seams. Estimate v                    | e grey and orange brown,                       |                            |                                 | ROCK                                                                                                           |
|                                                                                  |                       |                                                    |                                  |                          |               | <br>167.0                         | -<br>-<br>2  |                        |                 |                                                                              | ,                                              |                            |                                 |                                                                                                                |
|                                                                                  |                       |                                                    |                                  |                          |               | L                                 | -            |                        |                 | Estimate low strength (Clas                                                  | is 4).                                         | D                          |                                 |                                                                                                                |
|                                                                                  |                       |                                                    |                                  |                          |               | 166.0                             |              |                        |                 | 3.00m                                                                        |                                                |                            |                                 |                                                                                                                |
|                                                                                  |                       |                                                    |                                  |                          |               | 10                                | -            |                        |                 | Hole Terminated at 3.00 m<br>Refusal in weathered shale                      | (Class 4)                                      |                            |                                 |                                                                                                                |
|                                                                                  |                       |                                                    |                                  |                          |               | 1<br>165.0                        | 4            |                        |                 |                                                                              |                                                |                            |                                 |                                                                                                                |
|                                                                                  |                       |                                                    |                                  |                          |               | <br>164.0                         | -<br>-<br>5- |                        |                 |                                                                              |                                                |                            |                                 |                                                                                                                |
|                                                                                  | 8 - 7<br>DV 7<br>DT 7 | Metho<br>Auger<br>Auger<br>Auger<br>Auger<br>Auger | Screv<br>V Bit<br>Tung<br>le Bit |                          | lo re<br>rang | tion<br>sistand<br>ing to<br>usal | [            | ⊻ Le<br>> Infi<br>⊲ Pa | rtial Los       | SPT - Disturbed Samp<br>SPT - Standard Penet<br>SS PP - Pocket Penetrol      | mple D - Dr<br>ole M - Mo<br>ration Test W - W | y<br>bist<br>et<br>bisture | Conte                           | <u>Consistency/Relative Dens</u><br>VS - Very Soft<br>S - Soft<br>F - Firm<br>ent VSt - Very Stiff<br>H - Hard |
| WB- Washbore<br><u>Support</u><br>C - Casing<br>C - Core recov<br>C - Core recov |                       |                                                    |                                  |                          |               |                                   |              | ore Lo<br>red (ha      |                 | Loss<br><u>Classification S</u><br><u>and Soil Descri</u><br>Based on Unifie | LL - Lio<br><u>ymbols</u><br><u>ptions</u>     |                            |                                 | Fr - Friable<br>VL - Very Loose<br>L - Loose<br>MD - Medium Dense<br>D - Dense<br>VD - Very Dense              |



BH4

| Pi<br>Hi                                                     | ole             | it:<br>ect Na<br>Loca<br>Posi                                                                                                                              | tion:                          | G<br>W                             | Vilton Ju                   | nica<br>unci      | al Inv<br>tion S                | estiga<br>Schoo                                                                                  | I, Wilte                                               | on              | Junction School<br>5 m N MGA2020-56                                         | Commenced:<br>Completed:<br>Logged By:<br>Checked By:                                             | 27/5/<br>27/5/<br>JK<br>MG   |                                 |                                                                                                                |
|--------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------|-----------------------------|-------------------|---------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------|
|                                                              |                 | Mode<br>Dian                                                                                                                                               |                                | d Mount                            | •                           |                   | istie l<br>mm                   | Utility                                                                                          |                                                        |                 | Inclination: -90°<br>Bearing:                                               | RL Surface: 166<br>Datum: AH                                                                      | 6.70 m                       |                                 | perator: JK                                                                                                    |
|                                                              |                 | Diali                                                                                                                                                      |                                |                                    | ormatic                     |                   |                                 |                                                                                                  |                                                        |                 | Soil Desci                                                                  |                                                                                                   | 0                            | 0                               | Observations                                                                                                   |
| Method                                                       | Support         | Penetration                                                                                                                                                | Groundwater<br>Levels          | -                                  | oles &<br>Tests             | Recovery          | RL<br>(m)                       | Depth<br>(m)                                                                                     | Graphic Log                                            | Group<br>Symbol | Material De<br>Fraction, Colour, Str<br>Plasticity, Sensitiv                | scription<br>ructure, Bedding,                                                                    | Moisture<br>Condition        | Consistency<br>Relative Density |                                                                                                                |
|                                                              |                 |                                                                                                                                                            |                                | 0.20m                              |                             |                   |                                 |                                                                                                  | <u>×</u>                                               | CI              | TOPSOIL Silty CLAY: med                                                     | ium plasticity, dark brown.                                                                       | М/С                          | -                               | TOPSOIL                                                                                                        |
|                                                              |                 |                                                                                                                                                            |                                | D-S4<br>\ <del>9:30m</del><br>B-B1 |                             |                   | 1<br>165.7                      | -<br>-<br>-<br>1-                                                                                |                                                        | CI<br>/CH       | Silty CLAY: medium to high pale grey.                                       | n plasticity, orange brown w                                                                      | ith<br>M / C                 | St                              | RESIDUAL SOIL                                                                                                  |
| AU/I                                                         |                 |                                                                                                                                                            |                                | 1.10m                              |                             |                   | 16                              | -                                                                                                | × ×                                                    | CI<br>/CH       | 1.10m<br>Silty CLAY: medium to high<br>orange brown, trace of sha           |                                                                                                   | м / с                        | VSt                             | _                                                                                                              |
|                                                              |                 |                                                                                                                                                            |                                |                                    |                             |                   |                                 | -                                                                                                | × -                                                    |                 | 1.40m<br>SHALE: orange brown and<br>with clay seams. Estimate               |                                                                                                   |                              |                                 | ROCK                                                                                                           |
|                                                              |                 |                                                                                                                                                            |                                |                                    |                             | -                 | 1<br>164.7                      | 2                                                                                                |                                                        |                 |                                                                             |                                                                                                   | D                            |                                 |                                                                                                                |
|                                                              |                 |                                                                                                                                                            |                                |                                    |                             |                   |                                 | -                                                                                                |                                                        |                 | <sup>2.50m</sup><br>Hole Terminated at 2.50 m<br>Refusal in weathered shale | (Class 4)                                                                                         |                              |                                 |                                                                                                                |
|                                                              |                 |                                                                                                                                                            |                                |                                    |                             |                   | 1<br>163.7                      | 3-                                                                                               |                                                        |                 |                                                                             |                                                                                                   |                              |                                 |                                                                                                                |
|                                                              |                 |                                                                                                                                                            |                                |                                    |                             |                   | ا<br>162.7                      | -<br>-<br>4                                                                                      |                                                        |                 |                                                                             |                                                                                                   |                              |                                 |                                                                                                                |
|                                                              |                 |                                                                                                                                                            |                                |                                    |                             |                   | 161.7                           | -<br>-<br>5                                                                                      |                                                        |                 |                                                                             |                                                                                                   |                              |                                 |                                                                                                                |
| A[<br>A[                                                     | S -<br>DV<br>DF | <br>       <br>       <br>       <br>       <br> <br>       <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> | Scre<br>V Bi<br>Tung<br>de Bit | t<br>gsten                         | ra ra                       | o res<br>angi     | ion<br>sistanc<br>ng to<br>usal | [<br>-                                                                                           | ⊻ Le <sup>.</sup><br>> Infi<br>⊲ Pa                    | rtial Los       | SPT - Standard Penet<br>SPT - Pocket Penetro                                | mple D - D<br>ble M - M<br>ration Test W - W                                                      | ry<br>oist<br>′et<br>oisture | Conte                           | <u>Consistency/Relative Dens</u><br>VS - Very Soft<br>S - Soft<br>F - Firm<br>ent VSt - Very Stiff<br>H - Hard |
| RR - Rock Roller<br>WB- Washbore<br>C - Casing<br>C - Casing |                 |                                                                                                                                                            |                                |                                    | Log/Co<br>recove<br>ates ma | ore Lo<br>red (ha |                                 | Loss<br><u>Classification S</u><br><u>and Soil Descri</u><br>Based on Unifie<br>Classification S | LL - Li<br><u>ymbols</u><br>i <u>ptions</u><br>ed Soil | quid Li         | nit                                                                         | Fr - Friable<br>VL - Very Loose<br>L - Loose<br>MD - Medium Dense<br>D - Dense<br>VD - Very Dense |                              |                                 |                                                                                                                |



Borehole No.

BH5

|          |            |                 |                       | g Log                 |                 |                    |                 |                    |                  |                                                           | Project No.:             |                |                       | 1529.                           | 001                                               |
|----------|------------|-----------------|-----------------------|-----------------------|-----------------|--------------------|-----------------|--------------------|------------------|-----------------------------------------------------------|--------------------------|----------------|-----------------------|---------------------------------|---------------------------------------------------|
|          | ien<br>oie | t:<br>ect Na    | ime.                  |                       |                 | - SME<br>cal Inv   |                 | ation <sup>.</sup> | Wilton           | Junction School                                           | Commenced:<br>Completed: |                | 27/5/2<br>27/5/2      |                                 |                                                   |
|          |            | Loca            |                       |                       |                 |                    | Schoo           |                    |                  |                                                           | Logged By:               |                | JK                    | 2024                            |                                                   |
| Ho       | ole        | Posit           | ion:                  |                       |                 |                    |                 |                    |                  | 6 m N MGA2020-56                                          | Checked By:              | 1              | MG                    |                                 |                                                   |
| Dr       | rill N     | Mode            | l and                 | Mounting              | : Ch            | nristie            | Utility         |                    |                  | Inclination: -90°                                         | RL Surface:              | 166.           | 20 m                  |                                 |                                                   |
| Ho       | ole        | Diam            | eter                  |                       | 10              | 5 mm               |                 |                    |                  | Bearing:                                                  | Datum:                   | AHD            | )                     | Op                              | perator: JK                                       |
|          |            |                 | Drill                 | ing Inform            | ation           | 1                  |                 |                    |                  | Soil Desc                                                 | ription                  |                |                       |                                 | Observations                                      |
| Method   | Support    | Penetration     | Groundwater<br>Levels | Samples<br>Field Test | s s<br>Recoverv | RL<br>(m)          | Depth<br>(m)    | Graphic Log        | Group<br>Symbol  | Material De<br>Fraction, Colour, St<br>Plasticity, Sensit | tructure, Bedding,       |                | Moisture<br>Condition | Consistency<br>Relative Density | Structure and<br>Additional Observations          |
|          |            |                 |                       |                       |                 |                    |                 | <u>× X</u>         | CI               | TOPSOIL Silty CLAY: med                                   | lium plasticity, dark br | own.           | М                     |                                 | TOPSOIL                                           |
|          |            |                 |                       |                       |                 |                    | -               |                    | CI               | 0.20m<br>Silty CLAY: medium to hig                        | h plasticity, red brown  | and            |                       |                                 | RESIDUAL SOIL                                     |
|          |            |                 |                       |                       |                 |                    | -               | ×                  | /CH              | orange brown with pale gro                                | ey.                      |                |                       | F to<br>St                      |                                                   |
|          |            |                 |                       |                       |                 |                    | -               | ×                  |                  |                                                           |                          |                | м                     |                                 |                                                   |
|          |            |                 |                       |                       |                 |                    | -               |                    |                  |                                                           |                          |                |                       | St                              |                                                   |
|          |            |                 |                       | 1.00m                 | ,               | 165.2              | 1-              | ×                  |                  | 1.00m                                                     |                          |                |                       |                                 |                                                   |
|          |            |                 |                       | D-S5<br>1.10m         | ¥               | 4 9                | .<br>_          | ××                 | CI<br>/CH        | Silty CLAY: medium to hig<br>orange brown.                | h plasticity, pale grey  |                | M                     | VSt                             |                                                   |
|          |            |                 |                       |                       |                 |                    |                 | <u>x</u> -         |                  | 1.30m<br>SHALE: pale grey with ora                        | nge brown, with clav     |                | M / D                 |                                 | ROCK                                              |
| _        |            |                 |                       |                       |                 |                    |                 |                    |                  | Estimate very low strength                                | (Class 5).               |                |                       |                                 |                                                   |
|          |            |                 |                       |                       |                 |                    | -               |                    |                  |                                                           |                          |                |                       |                                 |                                                   |
|          |            |                 |                       |                       |                 | 2                  | -               |                    |                  |                                                           |                          |                |                       |                                 |                                                   |
|          | Į.         |                 |                       |                       |                 | <br>164.2          | 2-              |                    |                  |                                                           |                          |                |                       |                                 |                                                   |
|          | Į          |                 |                       |                       |                 |                    | -               |                    |                  |                                                           |                          |                | D                     |                                 |                                                   |
|          |            |                 |                       |                       |                 |                    | -               |                    |                  |                                                           |                          |                |                       |                                 |                                                   |
|          |            |                 |                       |                       |                 |                    | _               |                    |                  |                                                           |                          |                |                       |                                 |                                                   |
|          |            | III             |                       |                       |                 |                    |                 |                    |                  |                                                           |                          |                |                       |                                 |                                                   |
|          |            |                 |                       |                       |                 | N                  |                 |                    |                  |                                                           |                          |                |                       |                                 |                                                   |
|          |            |                 |                       |                       |                 | 163.2              | 3-              |                    |                  | 3 00m                                                     |                          |                |                       |                                 |                                                   |
|          | ť          |                 | 1                     |                       |                 |                    | -               |                    |                  | 3.20m<br>Hole Terminated at 3.20 m                        |                          |                |                       |                                 |                                                   |
|          |            |                 |                       |                       |                 |                    | -               | 1                  |                  | Refusal in weathered shale                                | e (Class 4)              |                |                       |                                 |                                                   |
|          |            |                 |                       |                       |                 |                    | -               | -                  |                  |                                                           |                          |                |                       |                                 |                                                   |
|          |            |                 |                       |                       |                 |                    | -               | -                  |                  |                                                           |                          |                |                       |                                 |                                                   |
|          |            |                 |                       |                       |                 | 2.2                | 4-              |                    |                  |                                                           |                          |                |                       |                                 |                                                   |
|          |            |                 |                       |                       |                 | 162.               |                 |                    |                  |                                                           |                          |                |                       |                                 |                                                   |
|          |            |                 |                       |                       |                 |                    | -               | ]                  |                  |                                                           |                          |                |                       |                                 |                                                   |
|          |            |                 |                       |                       |                 |                    | -               | 1                  |                  |                                                           |                          |                |                       |                                 |                                                   |
|          |            |                 |                       |                       |                 |                    | -               | 1                  |                  |                                                           |                          |                |                       |                                 |                                                   |
|          |            |                 |                       |                       |                 |                    | -               | -                  |                  |                                                           |                          |                |                       |                                 |                                                   |
|          |            |                 |                       |                       |                 | 161.2              | 5-              | -                  |                  |                                                           |                          |                |                       |                                 |                                                   |
|          |            |                 |                       |                       |                 | -                  | -               | -                  |                  |                                                           |                          |                |                       |                                 |                                                   |
|          |            |                 |                       |                       |                 |                    | _               |                    |                  |                                                           |                          |                |                       |                                 |                                                   |
|          |            |                 |                       |                       |                 |                    |                 |                    |                  |                                                           |                          |                |                       |                                 |                                                   |
|          |            |                 |                       |                       |                 |                    | -               | ]                  |                  |                                                           |                          |                |                       |                                 |                                                   |
|          |            |                 |                       |                       |                 |                    | -               | 1                  |                  |                                                           |                          |                |                       |                                 |                                                   |
|          | _          | Metho           | <u>d</u>              | P                     | enetra          | tion               | 1               |                    | Vater            | Samples and                                               | <u>Tests</u> Mo          | oisture        | Cond                  | lition                          | Consistency/Relative Dens                         |
| AS<br>AD | 3 - 1      | Auger<br>Auger  | Screv                 | wing 🖂                | No re           | esistan<br>ging to |                 | ⊻ Le               | vel (Dat         |                                                           | ample D                  | - Dry<br>- Moi |                       |                                 | VS - Verv Soft                                    |
| AD       | ᅚ          | Auger<br>Carbid | Tung                  | sten                  |                 | efusal             |                 | ⊳ Inf<br>⊲ Pa      | low<br>rtial Los | SPT - Standard Pene                                       | tration Test W           | - We           | t                     | Conte                           | F - Firm                                          |
|          | R - 1      | Rock F<br>Washt | Roller                |                       |                 |                    |                 |                    | mplete           | •                                                         | PI                       | L - Pla        | stic Li               | mit                             | H - Hard<br>Fr - Friable                          |
|          |            | Suppo           |                       |                       | <u>G</u>        |                    | Log/C<br>recove |                    |                  | Classification S                                          | Symbols                  |                |                       |                                 | VL - Very Loose<br>L - Loose                      |
|          |            | - Ca            |                       |                       |                 | indica             | ates ma         |                    |                  | <u>and Soil Descr</u><br>Based on Unifi                   |                          |                |                       |                                 | MD - Medium Dense<br>D - Dense<br>VD - Very Dense |
|          |            |                 |                       |                       | L               | Core               | loss            |                    |                  | Classification                                            | Sustem                   |                |                       |                                 | VD - Verv Dense                                   |



BH6

| C<br>P<br>H   | lier<br>roje   |                                                               | ame:<br>tion:                             | Wilton .                        | C/-<br>hnic<br>Junc | SME<br>al Inv                              | C<br>restiga<br>Schoo               | I, Wilto                | on                                                     | Junction School<br>) m N MGA2020-56                                                    | Commenced:<br>Completed:<br>Logged By:<br>Checked By: | 2<br>J                                                          | 27/5/2<br>27/5/2<br>IK<br>/IG |                                 |                                                                                                   |
|---------------|----------------|---------------------------------------------------------------|-------------------------------------------|---------------------------------|---------------------|--------------------------------------------|-------------------------------------|-------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|-------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------|
|               |                |                                                               |                                           | 0                               |                     |                                            | Utility                             |                         |                                                        | Inclination: -90°                                                                      |                                                       | 167.8                                                           |                               | 0                               |                                                                                                   |
| H             | lole           | Diam                                                          |                                           |                                 |                     | 5 mm                                       |                                     |                         |                                                        | Bearing:                                                                               |                                                       | AHD                                                             |                               | Op                              | perator: JK                                                                                       |
| _             |                |                                                               |                                           | ing Informat                    |                     |                                            | 1                                   |                         |                                                        | Soil Desc                                                                              | приоп                                                 |                                                                 |                               | ~                               | Observations                                                                                      |
| Method        | Support        | Penetration                                                   | Groundwater<br>Levels                     | Samples &<br>Field Tests        | Recovery            | RL<br>(m)                                  | Depth<br>(m)                        | Graphic Log             | Group<br>Symbol                                        | Material De<br>Fraction, Colour, St<br>Plasticity, Sensiti                             | ructure, Bedding,                                     |                                                                 | Moisture<br>Condition         | Consistency<br>Relative Density | Structure and<br>Additional Observations                                                          |
|               |                |                                                               |                                           |                                 |                     |                                            | _                                   | ×                       | CI                                                     | TOPSOIL Silty CLAY: med                                                                | lium plasticity, dark brov                            | wn.                                                             | М                             |                                 | TOPSOIL                                                                                           |
|               |                |                                                               |                                           | 0.30m<br>D-S6<br>0.40m<br>0.60m | Z                   |                                            | -                                   |                         | CI<br>/CH                                              | Silty CLAY: medium to higl<br>red brown with pale grey.                                | h plasticity, orange brov                             | vn and                                                          | М                             | F to<br>St                      | RESIDUAL SOIL                                                                                     |
| וחא           |                |                                                               |                                           | D-U50<br>0.80m                  |                     | <br>166.8                                  | -                                   |                         | CI<br>/CH                                              | Silty CLAY: medium to high<br>orange brown.                                            | h plasticity, pale grey w                             | ith                                                             | М                             | St                              |                                                                                                   |
|               |                |                                                               |                                           |                                 |                     | 166                                        | - 1                                 |                         |                                                        |                                                                                        |                                                       |                                                                 |                               | VSt                             |                                                                                                   |
|               |                |                                                               |                                           |                                 |                     |                                            | -                                   |                         |                                                        | 1.30m<br>SHALE: pale grey with red<br>Estimate very low strength                       |                                                       |                                                                 | <u>M / D</u>                  |                                 | ROCK                                                                                              |
| +             |                |                                                               |                                           |                                 |                     |                                            |                                     |                         |                                                        | <sup>1.80m</sup><br>Hole Terminated at 1.80 m                                          | 1                                                     |                                                                 |                               |                                 |                                                                                                   |
|               |                |                                                               |                                           |                                 |                     | <br>164.8 165.8                            | -<br>-<br>-<br>3-<br>-              |                         |                                                        |                                                                                        |                                                       |                                                                 |                               |                                 |                                                                                                   |
|               |                |                                                               |                                           |                                 |                     | <br>163.8                                  | 4                                   |                         |                                                        |                                                                                        |                                                       |                                                                 |                               |                                 |                                                                                                   |
|               |                |                                                               |                                           |                                 |                     | <br>162.8                                  | 5                                   |                         |                                                        |                                                                                        |                                                       |                                                                 |                               |                                 |                                                                                                   |
| Al<br>Al<br>R | D¥<br>D∓<br>R- | Metho<br>Auger<br>Auger<br>Auger<br>Carbic<br>Rock I<br>Washl | Scre<br>V Bit<br>Tung<br>le Bit<br>Rollei | jsten                           | lo re<br>rang       | t <u>ion</u><br>sistano<br>ing to<br>iusal | [                                   | ⊻ Lev<br>> Infl<br>⊲ Pa | <u>Vater</u><br>vel (Dat<br>low<br>rtial Los<br>mplete | SPT - Standard Pene<br>s PP - Pocket Penetro                                           | mple D<br>ple M<br>tration Test W<br>meter w<br>PL    | sture<br>- Dry<br>- Mois<br>- Wet<br>- Mois<br>- Plas<br>- Liqu | st<br>sture                   | Conte<br>mit                    | H - Hard                                                                                          |
|               | С              | Supp                                                          | ort                                       |                                 | <u>Gr</u>           | Core                                       | Log/Co<br>recove<br>ates ma<br>loss | red (ha                 |                                                        | <u>Classification S</u><br><u>and Soil Descr</u><br>Based on Unifi<br>Classification S | Symbols<br>iptions<br>ed Soil                         | 79                                                              |                               |                                 | Fr - Friable<br>VL - Very Loose<br>L - Loose<br>MD - Medium Dense<br>D - Dense<br>VD - Very Dense |



| C<br>P<br>H | lier<br>roje   |                                        | ame:<br>tion:                             | Wilton                                  | / C/-<br>hnic | cal Inv                     | /estiga<br>Schoo  | I, Wilte                                    | on                  | Junction School                                                                         | Commenced:<br>Completed:<br>Logged By:<br>Checked By:                                                                                                                                   | 27/5/2<br>27/5/2<br>JK<br>MG |                                 |                                                                |
|-------------|----------------|----------------------------------------|-------------------------------------------|-----------------------------------------|---------------|-----------------------------|-------------------|---------------------------------------------|---------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------|----------------------------------------------------------------|
|             |                |                                        |                                           | d Mounting:                             |               |                             | Utility           |                                             | 2317.1              | Inclination: -90°                                                                       |                                                                                                                                                                                         | 3.80 m                       |                                 |                                                                |
| Н           | lole           | Diam                                   |                                           |                                         |               | 5 mm                        |                   |                                             |                     | Bearing:                                                                                | Datum: AH                                                                                                                                                                               | ID                           | O                               | perator: JK                                                    |
|             |                |                                        | Drill                                     | ing Informa                             | tion          | 1                           | 1                 |                                             |                     | Soil Desci                                                                              | ription                                                                                                                                                                                 |                              |                                 | Observations                                                   |
| Method      | Support        | Penetration                            | Groundwater<br>Levels                     | Samples &<br>Field Tests                | Recovery      | RL<br>(m)                   | Depth<br>(m)      | Graphic Log                                 | Group<br>Symbol     | Material De<br>Fraction, Colour, Str<br>Plasticity, Sensiti                             | ructure, Bedding,                                                                                                                                                                       | Moisture<br>Condition        | Consistency<br>Relative Density | Structure and<br>Additional Observations                       |
|             |                |                                        |                                           |                                         |               |                             | _                 | ×                                           | CI                  | TOPSOIL Silty CLAY: med                                                                 | ium plasticity, dark brown.                                                                                                                                                             | м                            |                                 | TOPSOIL                                                        |
|             |                |                                        |                                           | 0.40m<br>B-B2<br>0.60m<br>D-S7<br>D-U50 |               |                             | -                 |                                             | CI<br>/CH           | 0.30m<br>Silty CLAY: medium to high<br>orange brown and pale gre<br>gravel.             |                                                                                                                                                                                         | M                            | F to<br>St                      | RESIDUAL SOIL                                                  |
|             |                |                                        |                                           | 0.70m<br>0.80m<br>1.00m                 |               | 2.8                         | -                 | ×                                           |                     |                                                                                         |                                                                                                                                                                                         |                              | St                              |                                                                |
| AU/I        |                |                                        |                                           |                                         |               | 162.                        | -                 |                                             | CI<br>/CH           | 1.10m<br>Silty CLAY: medium to high<br>orange brown.                                    | n plasticity, pale grey with                                                                                                                                                            | M / D                        | VSt                             |                                                                |
|             |                |                                        |                                           |                                         |               |                             | -                 |                                             |                     | SHALE: pale grey with oran<br>Estimate very low strength                                | nge brown, with clay seams<br>(Class 5).                                                                                                                                                | S.                           |                                 | ROCK                                                           |
|             |                |                                        |                                           |                                         |               | 161.8                       | 2-                |                                             | -<br>-<br>-<br>-    |                                                                                         |                                                                                                                                                                                         | D                            |                                 |                                                                |
|             |                |                                        |                                           |                                         |               | 160.8                       |                   |                                             | -                   | <sup>2.50m</sup><br>Hole Terminated at 2.50 m<br>Refusal in weathered shale             |                                                                                                                                                                                         |                              |                                 |                                                                |
|             |                |                                        |                                           |                                         |               | <br>159.8                   |                   |                                             |                     |                                                                                         |                                                                                                                                                                                         |                              |                                 |                                                                |
|             |                |                                        |                                           |                                         |               | <br>158.8                   | -<br>-<br>5<br>-  |                                             |                     |                                                                                         |                                                                                                                                                                                         |                              |                                 |                                                                |
| A<br>A<br>R | D¥<br>D∓<br>R- | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | Scre<br>V Bit<br>Tunç<br>le Bit<br>Rollei | wing I<br>gsten                         | rang<br>rei   | sistano<br>jing to<br>fusal | [                 | ⊻ Le <sup>v</sup><br>> Infl<br>⊲ Pa<br>▼ Co | rtial Los<br>mplete | SPT - Standard Penet<br>SPT - Standard Penet<br>PP - Pocket Penetro<br>Loss             | mple         D         - D           ble         M         - M           rration Test         W         - W           meter         w         - M           PL         - P         - LL | iry<br>loist                 | Conte<br>mit                    | H - Hard<br>Fr - Friable<br>VL - Very Loose                    |
|             | С              | <u>Supp</u><br>- Ca                    |                                           |                                         | ]             | Core                        | recove<br>ates ma | red (ha                                     | atching             | <u>Classification S</u><br><u>and Soil Descr</u><br>Based on Unifie<br>Classification S | i <u>ptions</u><br>ed Soil                                                                                                                                                              |                              |                                 | L - Loose<br>MD - Medium Dense<br>D - Dense<br>VD - Very Dense |



Borehole No.

BH8

|        | Hole                      |                                                      | ime:<br>tion:                                      | Wilton .                            | C/-<br>hnic<br>Junc  | al Inv                                            | C<br>restiga<br>School     | l, Wilto                                              | on                               | Junction School                                                                                                                             | Completed:<br>_ogged By:                                                            | 27/5/2<br>27/5/2<br>MG<br>MG         |                                 |                                                                                                                                                                                                                                                                                                                                                     |
|--------|---------------------------|------------------------------------------------------|----------------------------------------------------|-------------------------------------|----------------------|---------------------------------------------------|----------------------------|-------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                           | Mode<br>Diam                                         |                                                    | -                                   |                      | njin D<br>5 mm                                    | B8                         |                                                       |                                  |                                                                                                                                             | RL Surface: 168.<br>Datum: AHE                                                      | .20 m<br>)                           |                                 | perator: AC                                                                                                                                                                                                                                                                                                                                         |
|        |                           |                                                      |                                                    | ing Informat                        |                      | ,                                                 |                            |                                                       |                                  | Soil Descripti                                                                                                                              |                                                                                     |                                      |                                 | Observations                                                                                                                                                                                                                                                                                                                                        |
| Method | Support                   | Penetration                                          | Groundwater<br>Levels                              | Samples &<br>Field Tests            | Recovery             | RL<br>(m)                                         | Depth<br>(m)               | Graphic Log                                           | Group<br>Symbol                  | Material Descrip<br>Fraction, Colour, Structu<br>Plasticity, Sensitivity, /                                                                 | tion<br>re, Bedding,                                                                | Moisture<br>Condition                | Consistency<br>Relative Density | Structure and<br>Additional Observations                                                                                                                                                                                                                                                                                                            |
|        |                           |                                                      |                                                    |                                     |                      |                                                   | -                          | 4 <sup> x</sup>        x <br>xn                       | CI<br>CI<br>/CH                  | TOPSOIL Silty CLAY: medium ;<br>0.25m brown, with fine grained sand; v<br>Gravelly Silty CLAY: medium to<br>mottled brown, with ironstone g | /ith rootlet.<br>high plasticity, red                                               | М                                    | F/                              | TOPSOIL<br>RESIDUAL SOIL                                                                                                                                                                                                                                                                                                                            |
|        |                           |                                                      |                                                    | 0.50m<br>SPT<br>3,6,11<br>N=17      |                      |                                                   | -                          | ×                                                     | CI<br>/CH                        | 0.55m<br>Silty CLAY: medium to high plas<br>red and brown, with a trace of ir                                                               | sticity, pale grey, mottle                                                          | м                                    | St<br>St                        |                                                                                                                                                                                                                                                                                                                                                     |
|        |                           |                                                      |                                                    | 0.95m                               |                      | <br>7.2                                           | -   1                      |                                                       | /011                             | 1.05m                                                                                                                                       | unsione gravei.                                                                     | D / M                                | VSt                             |                                                                                                                                                                                                                                                                                                                                                     |
| AD/T   |                           |                                                      |                                                    | 1.50m                               |                      | 1<br>167.                                         | -                          |                                                       |                                  | SHALE: red brown, becoming p<br>extremely weathered, very low s                                                                             | ale grey, estimated<br>strength (class 5).                                          | D/M                                  |                                 | ROCK                                                                                                                                                                                                                                                                                                                                                |
|        |                           |                                                      |                                                    | SPT<br>10,21,Bounce<br>N=R<br>1.85m |                      | <br>166.2                                         | - 2-                       |                                                       |                                  | 1.80m<br>SHALE: dark grey to grey, estim<br>very low strength (class 4).                                                                    | nated highly weathered,                                                             | D                                    |                                 |                                                                                                                                                                                                                                                                                                                                                     |
|        |                           |                                                      |                                                    |                                     |                      | 16                                                |                            |                                                       |                                  | 2.20m<br>Continued on cored borehole sh                                                                                                     | leet                                                                                |                                      |                                 |                                                                                                                                                                                                                                                                                                                                                     |
|        |                           |                                                      |                                                    |                                     |                      | <br>164.2 165.2                                   |                            |                                                       |                                  |                                                                                                                                             |                                                                                     |                                      |                                 |                                                                                                                                                                                                                                                                                                                                                     |
|        |                           |                                                      |                                                    |                                     |                      | <br>163.2                                         | -<br>-<br>5<br>-<br>-<br>- |                                                       |                                  |                                                                                                                                             |                                                                                     |                                      |                                 |                                                                                                                                                                                                                                                                                                                                                     |
|        | AD¥<br>ADŦ<br>RR -<br>WB- | Metho<br>Auger<br>Auger<br>Carbic<br>Rock I<br>Washl | Screv<br>V Bit<br>Tung<br>le Bit<br>Roller<br>pore | sten                                | lo re<br>rang<br>ref | sistanc<br>ing to<br>usal<br><b>aphic</b><br>Core | [                          | ⊻ Lev<br>> Infl<br>⊲ Pa<br>◀ Co<br>ore Los<br>red (ha | rtial Los<br>mplete<br><u>ss</u> | s PP - Pocket Penetromete                                                                                                                   | D - Dry<br>M - Mo<br>n Test W - We<br>r W - Mo<br>PL - Pla<br>LL - Liq<br><u>ns</u> | /<br>ist<br>et<br>isture<br>istic Li | Conte                           | Consistency/Relative Dens           VS         - Very Soft           S         - Soft           F         - Firm           ent         VSt         - Very Stiff           H         - Hard         - Friable           VL         - Very Loose         - Loose           MD         - Medium Dense         D           D         - Dense         VD |



| F      | lole    | nt:<br>ect<br>e Lo<br>e Po    | cat     | ion:    |                   | Geote<br>Wilto                       | echnio<br>n Juno | SMEC<br>cal Investigation: Wilton Junction School<br>ction School, Wilton<br>86311.4 m E 6212209.7 m N MGA2020-56                                                                                                                                                                   |                | Commence<br>Completed<br>Logged By<br>Checked B                              | l: 2<br>/: N                                                                                                 | 27/5/2024<br>27/5/2024<br>MG<br>MG                                                                                                                                   |                                                                                          |
|--------|---------|-------------------------------|---------|---------|-------------------|--------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
|        |         |                               |         |         | l Mou<br>d Lei    | inting:<br>ngth:                     |                  | njin DB8 Inclination: -90<br>pped Face 3 m Bearing:                                                                                                                                                                                                                                 | )°             | RL Surface<br>Datum:                                                         | e: 168.2<br>AHD                                                                                              |                                                                                                                                                                      | AC                                                                                       |
|        | Dr      | rillin                        | g l     | nfor    | rmati             | on                                   |                  | Rock Substance                                                                                                                                                                                                                                                                      |                |                                                                              |                                                                                                              | Rock Mass D                                                                                                                                                          | efects                                                                                   |
| Method | Support | Water                         | TCR (%) | RQD (%) | RL<br>(m)         | Depth<br>(m)                         | Graphic Log      | Material Description<br>rock type: grain characteristics, colour,<br>structure, minor components                                                                                                                                                                                    | Weathering     | Strength<br>UCS=: l <sub>iso)</sub><br>● - Axial<br>O - Diametral<br>■ - UCS | Average<br>Defect<br>Spacing<br>(mm)                                                                         | thickness, type<br>roughness                                                                                                                                         | Description<br>inclination, planarity,<br>, coating/infilling                            |
|        |         | E                             | 100     | 36      | 165.2 166.2 167.2 | 1                                    |                  | 2.20m Continued from non-cored borehole sheet<br>SHALE: orange brown to grey brown, laminated<br>2.40m 0-5°.<br>SHALE: dark grey with red orange, laminated at<br>0-5°.<br>2.83m<br>SHALE: dark grey to grey, with occasional orang<br>grey lenses, laminated at 0-5°.              | MW             |                                                                              |                                                                                                              | EW, <5 mm, closed<br>IS, clay, =20 mm<br>P, 0°, clay<br>HB<br>DB<br>IS<br>HB<br>P, 0°<br>EW, <5 mm<br>P, 0°<br>EW, <5 mm<br>HB<br>P, 0°<br>EW, =10 mm<br>HB<br>P, 0° | 1 spaced                                                                                 |
|        |         | 100% Polymer Return           | 100     | 89      | <br>163.2 164.2   | 4                                    |                  | A.05m     SANDSTONE: fine to medium grained, orange brown to pale grey, bedded at 10-15°.     A.63m     SILTSTONE: fine grained, pale grey, with stained orange, laminated at 0-10°.     S.05m     SHALE: fine grained, grey to orange and dark grey, laminated at 0-10°.     S.44m | sw<br>sw<br>sw |                                                                              |                                                                                                              | - P, 3°<br>- EW, =40 mm<br>- P, 5°<br>- P, 2°<br>- P, 5°<br>- HB<br>- J, 45°, CN, PR, SM<br>- P, 0°<br>- EW, 10°                                                     | 1                                                                                        |
|        |         |                               | 100     | 001     | od                | -                                    |                  | SANDSTONE: fine grained, pale grey, with grey<br>bedding at 0-10°.<br>Water Graphic Log/Corv                                                                                                                                                                                        | FR<br>FR       |                                                                              |                                                                                                              | HB<br>DB                                                                                                                                                             | Strenath                                                                                 |
|        |         | AS<br>WB<br>HQ3<br>NQ3<br>NML | -       | Aug     | er Scr            | ewing<br>Barrel<br>Barrel<br>re Barr | el               | Water     Graphic Log/Conv            ∑ Level (Date)         ☐ Inflow         ☐ Partial Loss         ☐ Complete Loss         Support           ☐ Core recovered         ☐ Indicates mathematic         ☐ Core loss         ☐         ☐         ☐                                    | ed (hato       | ching FR -<br>SW -<br>MW -<br>DW -<br>HW -<br>XW -<br>SS -                   | Weatherin<br>Fresh<br>Slightly Wea<br>Moderately<br>Distinctly W<br>Highly Wea<br>Extremely W<br>Residual So | g Vl<br>athered L<br>Weathered M<br>/eathered H<br>thered Vf<br>Weathered Ef<br>oil                                                                                  | Strength<br>- Very Low<br>- Low<br>- Medium<br>- High<br>- Very High<br>- Extremely High |



| E      | ng                            | ine                           | ee      | rin         | g L                                 | og -                                 | - Co                      | red Borehole                                                                                                                                                         |            | F      | Project No                                                                             | o.: C                                                                                                                                                                        | G11529.001                                                                | Page 3 of 3                                                         |
|--------|-------------------------------|-------------------------------|---------|-------------|-------------------------------------|--------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------|
|        | Clier<br>Proj<br>Hole<br>Hole | nt:<br>ect<br>e Lo            | Nar     | me:<br>ion: |                                     | SINS<br>Geote<br>Wiltor              | W C/-<br>echnic<br>n Junc | SMEC<br>al Investigation: Wilton Junction School<br>ction School, Wilton<br>86311.4 m E 6212209.7 m N MGA2020-56                                                     |            | C<br>L | Commeno<br>Complete<br>Logged B<br>Checked                                             | d: 2<br>y: N                                                                                                                                                                 | 17/5/2024<br>17/5/2024<br>MG<br>MG                                        |                                                                     |
|        |                               |                               |         |             | l Mou<br>d Ler                      | inting:<br>ngth:                     |                           | njin DB8 Inclination: -90°<br>pped Face 3 m Bearing:                                                                                                                 | )          |        | RL Surfac<br>Datum:                                                                    | ce: 168.2<br>AHD                                                                                                                                                             | 20 m<br>Operator:                                                         | AC                                                                  |
|        | Dr                            | rillin                        | ng li   | nfoi        | rmati                               | on                                   |                           | Rock Substance                                                                                                                                                       |            |        |                                                                                        |                                                                                                                                                                              | Rock Mass I                                                               | Defects                                                             |
| Method | Support                       | Water                         | TCR (%) | RQD (%)     | RL<br>(m)                           | Depth<br>(m)                         | Graphic Log               | Material Description<br>rock type: grain characteristics, colour,<br>structure, minor components                                                                     | Weathering | и<br>0 | Strength<br>UCS=-l <sub>(50)</sub><br>● - Axial<br>- Diametral<br>■ - UCS<br>U ≅ ⊥ → Щ | Average<br>Defect<br>Spacing<br>(mm)                                                                                                                                         | thickness, type                                                           | t Description<br>e, inclination, planarity,<br>s, coating/infilling |
| NMLC   |                               | 100% Polymer Return           | 100     | 100         | 157.2 158.2 159.2 161.2 161.2 161.2 |                                      |                           | SANDSTONE: fine grained, pale grey, with grey<br>bedding at 0-10° <i>(continued)</i>                                                                                 | FR         |        |                                                                                        |                                                                                                                                                                              | - DB<br>- HB                                                              |                                                                     |
|        |                               | AS<br>WB<br>HQ3<br>NQ3<br>NML | -       | HQ          | er Scr<br>shbore<br>3 Core          | ewing<br>Barrel<br>Barrel<br>re Barr | el                        | Water     Graphic Log/Core            ∠ Level (Date) <ul> <li>Inflow</li> <li>Partial Loss</li> <li>Complete Loss</li> <li>Support</li> <li>T - Timbering</li> </ul> | d (hato    |        | 9 SW<br>MW<br>DW<br>HW<br>XW                                                           | Weatherin           - Fresh           - Slightly Wea           - Moderately           - Distinctly W           - Highly Wea           - Extremely V           - Residual Sci | - V<br>athered L<br>Weathered M<br>/eathered H<br>thered V<br>Veathered E | 1 - Medium                                                          |

| Grig 11529 BH8<br>START At 2.20M<br>3<br>4<br>5<br>6<br>7<br>8 |                                                                             |                                                                                                   | NP AT 8.72   |
|----------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------|
| GOTECHNICS                                                     | Project No: GG11529.001<br>Client: SINSW C/- SMEC<br>Date Cored: 27/05/2024 | Geotechnical Investigation<br>New Primary School at Wilton<br>Junction<br><b>CORE PHOTO - BH8</b> | Box : 1 of 1 |



| Eı     | ngi                               | nee                                                                   | rin                                                | g Log - E                                     | Зоі                     | reh                                              | ole              |                                                                 |                                  | Project                                                                                        | No.: C                                                                                | GG11                         | 529.                            | 001                                                                                                                                                                                                                                                                                                                                                                                    |
|--------|-----------------------------------|-----------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|-------------------------|--------------------------------------------------|------------------|-----------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F      | lole                              | nt:<br>ect Na<br>Loca<br>Posit                                        | tion:                                              | Wilton J                                      | nnica<br>unct           | al Inv<br>tion S                                 | estiga<br>School | l, Wilto                                                        | on                               | Junction School Comple<br>Logged<br>m N MGA2020-56 Checke                                      | eted: 2<br>d By: J                                                                    | 27/5/2<br>27/5/2<br>IK<br>MG |                                 |                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                   | Mode<br>Diarr                                                         |                                                    | -                                             |                         | ijin D<br>mm                                     | B8               |                                                                 |                                  | Inclination: -90° RL Sur<br>Bearing: Datum:                                                    |                                                                                       |                              | Or                              | perator: AC                                                                                                                                                                                                                                                                                                                                                                            |
|        |                                   |                                                                       |                                                    | ing Informati                                 |                         |                                                  |                  |                                                                 |                                  | Soil Description                                                                               |                                                                                       |                              | 10                              | Observations                                                                                                                                                                                                                                                                                                                                                                           |
| Method | Support                           | Penetration                                                           | Groundwater<br>Levels                              | Samples &<br>Field Tests                      | Recovery                | RL<br>(m)                                        | Depth<br>(m)     | Graphic Log                                                     | Group<br>Symbol                  | Material Description<br>Fraction, Colour, Structure, Bedo<br>Plasticity, Sensitivity, Addition |                                                                                       | Moisture<br>Condition        | Consistency<br>Relative Density | Structure and<br>Additional Observations                                                                                                                                                                                                                                                                                                                                               |
|        |                                   |                                                                       |                                                    |                                               |                         |                                                  |                  |                                                                 | CI                               | TOPSOIL Silty CLAY: medium plasticity                                                          | /, dark brown.                                                                        | м                            |                                 | TOPSOIL                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                   |                                                                       |                                                    | 0.50m<br>SPT<br>4,7,10<br>N=17                |                         |                                                  | -                |                                                                 | CI<br>/CH                        | 0.30m<br>Silty CLAY: medium to high plasticity, o<br>pale grey.                                | range brown with                                                                      | ו<br>M                       | F to<br>St                      | RESIDUAL SOIL<br>0.60: PP= 450kPa                                                                                                                                                                                                                                                                                                                                                      |
|        |                                   |                                                                       |                                                    | S8 at 0.60m<br>0.95m<br>1.00m                 |                         | 2                                                | -                |                                                                 |                                  | 1.00m                                                                                          |                                                                                       |                              | St                              |                                                                                                                                                                                                                                                                                                                                                                                        |
| AD/T   |                                   |                                                                       |                                                    | SPT<br>3,6,16<br>N=22<br>S9 at 1.20m<br>1.45m |                         | 167                                              | 1                |                                                                 | CI<br>/CH                        | Silty CLAY: medium to high plasticity, p<br>orange brown.                                      |                                                                                       | M / D<br>M / D               | VSt                             | 1.20: PP= 450kPa                                                                                                                                                                                                                                                                                                                                                                       |
|        |                                   |                                                                       |                                                    | 1.1011                                        |                         |                                                  | -                |                                                                 |                                  | SHALE: dark grey with pale grey and or<br>Estimate very low strength (Class 5).                | range brown.                                                                          |                              |                                 | ROCK                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                   |                                                                       |                                                    |                                               |                         | 1<br>166.2                                       | -<br>2           | · · · · · · · · · · · · · · · · · · ·                           |                                  |                                                                                                |                                                                                       | D                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                   |                                                                       |                                                    |                                               | +                       |                                                  | -                |                                                                 |                                  | 2.37m<br>Continued on cored borehole sheet                                                     |                                                                                       |                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                   |                                                                       |                                                    |                                               |                         | 1<br>165.2                                       | -<br>3—<br>-     |                                                                 |                                  |                                                                                                |                                                                                       |                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                   |                                                                       |                                                    |                                               |                         | 1<br>164.2                                       | -<br>4<br>-      |                                                                 |                                  |                                                                                                |                                                                                       |                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                   |                                                                       |                                                    |                                               |                         | 1<br>163.2                                       | -<br>5—<br>-     |                                                                 |                                  |                                                                                                |                                                                                       |                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                        |
| F      | AS -<br>ADV<br>ADT<br>RR -<br>WB- | Metho<br>Auger<br>Auger<br>Carbic<br>Rock I<br>Washl<br>Suppo<br>- Ca | Screv<br>V Bit<br>Tung<br>le Bit<br>Roller<br>pore | sten                                          | o res<br>rangii<br>refu | sistanc<br>ng to<br>usal<br><b>aphic</b><br>Core | [<br>-<br>Log/C  | ⊻ Lev<br>> Infl<br>⊲ Pai<br>◀ Coi<br>o <u>re Los</u><br>red (ha | rtial Los<br>mplete<br><u>ss</u> | SPT - Standard Penetration Test<br>s PP - Pocket Penetrometer                                  | <u>Moisture</u><br>D - Dry<br>M - Moi<br>W - Wet<br>w - Moi<br>PL - Plas<br>LL - Liqu | st<br>t<br>sture<br>stic Lir | Conte<br>nit                    | Consistency/Relative Densistency/Relative Densistency         VS       - Very Soft         S       - Soft         F       - Firm         Int       VSt       - Very Stiff         H       - Hard       - Friable         VL       - Very Loose       - Loose         MD       - Medium Dense       D         D       - Dense       VD         VD       - Very Dense       - Very Dense |



|        | Hol     | nt:<br>ject<br>e Lo<br>e Pc | cat                     | ion:                            |                                      | Geote<br>Wiltor                       | chnic<br>Junc | SMEC<br>al Investigation: Wilton Junction School<br>tion School, Wilton<br>86256.5 m E 6212239.6 m N MGA2020-56                                                                                                                                |            | Commen<br>Complete<br>Logged B<br>Checked                                   | d: 2<br>y: J                                                                                                                   | 7/5/2024<br>7/5/2024<br>K<br>1G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |
|--------|---------|-----------------------------|-------------------------|---------------------------------|--------------------------------------|---------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
|        |         |                             |                         |                                 | l Mou<br>d Lei                       | inting:<br>ngth:                      |               | njin DB8 Inclination: -90<br>pped Face 3 m Bearing:                                                                                                                                                                                            | °          | RL Surfac<br>Datum:                                                         | ce: 168.2<br>AHD                                                                                                               | 0 m<br>Operator:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AC                                                              |
|        | D       | rillin                      | g I                     | nfoi                            | rmati                                | on                                    |               | Rock Substance                                                                                                                                                                                                                                 |            |                                                                             |                                                                                                                                | Rock Mass L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )efects                                                         |
| Method | Support | Water                       | TCR (%)                 | RQD (%)                         | RL<br>(m)                            | Depth<br>(m)                          | Graphic Log   | Material Description<br>rock type: grain characteristics, colour,<br>structure, minor components                                                                                                                                               | Weathering | Strength<br>UCS≕.L <sub>(50)</sub><br>● - Axial<br>O - Diametral<br>■ - UCS | Average<br>Defect<br>Spacing<br>(mm)                                                                                           | thickness, type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Description<br>, inclination, planarity,<br>, coating/infilling |
| NMLC:  |         | 100% Water Return           | 100 100                 | 58 25                           | 2 16.2 165.2 166.2 167.2             |                                       |               | 2.37m Continued from non-cored borehole sheet<br>SHALE: dark grey with red brown and pale grey,<br>laminated at 0-15°, with clay seams.                                                                                                        | SW         |                                                                             |                                                                                                                                | → J, 85°, IR, RF<br>clay, SM<br>→ P, 0°, PR, RF<br>→ Clay, SM<br>→ J, 85°, IR, SM<br>→ J, 80°, clay, IR, RF<br>→ P, 2°, clay, VN, PR<br>→ J, 80°, clay, VN, PR<br>→ J, 40°, clay, VN, | , RF<br>, RF<br>, SM<br>, RF                                    |
|        |         |                             | 100                     | 100                             | <br>163.2                            | 5                                     |               | SANDSTONE: fine to medium grained, orange<br>brown with pale grey, bedded at 0-10° with shale<br>interbeds.<br>5.76m<br>Fine to medium grained, pale grey with dark grey<br>bedded at 0-10°.                                                   | sw         |                                                                             |                                                                                                                                | J, 90°, clay, IR, RF<br>P, 0°, PR, SM<br>P, 0°, PR, SM<br>clay, SM<br>Clay, SM<br>P, 0°, PR, SM<br>DB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , infill                                                        |
|        |         | HQ3<br>NQ3                  | <u>M</u><br>-<br>-<br>- | Aug<br>Aug<br>Was<br>HQ3<br>NQ3 | er Scr<br>shbore<br>3 Core<br>3 Core | ewing<br>Barrel<br>Barrel<br>re Barre | el            | Water     Graphic Log/Core            \[             Level (Date)             Inflow         \[             Partial Loss             Core recovered         indicates mate         Core loss             Support         T         - Timbering | ed (hat    | ching FR<br>SW<br>MW<br>DW<br>HW<br>XW<br>RS                                | Weathering<br>- Fresh<br>- Slightly Wea<br>- Moderately '<br>- Distinctly W<br>- Highly Weat<br>- Extremely V<br>- Residual So | g V<br>athered L<br>Weathered M<br>eathered H<br>hered V<br>Veathered E<br>il                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 |



| C<br>P<br>H | lien<br>roje<br>lole<br>lole | ect I<br>Loc           | Nan<br>cati | ne:<br>on:        |                                  | Geote<br>Wiltor                      | N C/-<br>echnic<br>n Junc | SMEC<br>al Investigation: Wilton Junction School<br>stion School, Wilton<br>86256.5 m E 6212239.6 m N MGA2020-56                                                                    |            | Commen<br>Complete<br>Logged B<br>Checked                                   | ed: 2<br>sy: J                                                                                                                                                  | 7/5/2024<br>7/5/2024<br>K<br>IG                        |                                                                                                         |
|-------------|------------------------------|------------------------|-------------|-------------------|----------------------------------|--------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
|             |                              |                        |             |                   | Mou<br>d Ler                     | nting:<br>ath:                       |                           | njin DB8 Inclination: -90°<br>pped Face 3 m Bearing:                                                                                                                                |            | RL Surfac<br>Datum:                                                         | ce: 168.2<br>AHD                                                                                                                                                | 0 m<br>Operator:                                       | AC                                                                                                      |
|             |                              |                        |             |                   | mati                             |                                      |                           | Rock Substance                                                                                                                                                                      |            |                                                                             |                                                                                                                                                                 | Rock Mass                                              |                                                                                                         |
|             | Support                      | Water                  | TCR (%)     | RQD (%)           | RL<br>(m)                        | Depth<br>(m)                         | Graphic Log               | Material Description<br>rock type: grain characteristics, colour,<br>structure, minor components                                                                                    | Weathering | Strength<br>UCS=·L <sub>(50)</sub><br>● - Axial<br>O - Diametral<br>■ - UCS | Average<br>Defect<br>Spacing<br>(mm)                                                                                                                            | thickness, typ                                         | ct Description<br>e, inclination, planarity,<br>ss, coating/infilling                                   |
|             |                              | 100% Water Return      |             | 100               | 157.2 158.2 159.2 161.2 161.2 [. |                                      |                           | Eine to medium grained, pale grey with dark grey,<br>bedded at 0-10° (continued)                                                                                                    |            |                                                                             |                                                                                                                                                                 | — Р, 5°<br>— Р, 2°<br>— Р, 2°<br>— НВ<br>— DВ<br>— НВ  |                                                                                                         |
|             | V<br>F<br>N                  | NS<br>VB<br>IQ3<br>IML | -           | Was<br>HQ3<br>NQ3 | er Scre<br>hbore<br>Core<br>Core | ewing<br>Barrel<br>Barrel<br>e Barre | el                        | Water     Graphic Log/Core       ∠     Level (Date)       □     Inflow       ✓     Partial Loss       ✓     Core loss       ✓     Complete Loss       Support       T     Timbering | d (hato    | ching FR<br>SW<br>MW<br>DW<br>HW<br>XW                                      | Weathering         Fresh         Slightly Weathering         Moderately         Distinctly W         Highly Weathering         Extremely V         Residual Sci | athered<br>Weathered<br>eathered<br>hered<br>Veathered | Strength<br>VL - Very Low<br>L - Low<br>M - Medium<br>H - High<br>VH - Very High<br>EH - Extremely High |

| B49 | GG11529<br>27/5/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Wilton                                                                                                          | 12 (A. ) (A. ) | Start * | 2.37m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | <b>MAN</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M        | T |                |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---|----------------|
| 3   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | -                      | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | with the | 1 | N.             |
| 4   | Trat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 | e a            | Me      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - Hansel                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19                                    |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100      |   | 17 <b>3</b> 1  |
| 5   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                |         | ten de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - in the                              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MI KAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |   |                |
| 6   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | ( April 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |   |                |
| 7   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | LAN Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Man Maria                             | (初期)                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19XX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |   |                |
|     | The subscription of the local division of th | the second se |                |         | the second | NAMES OF TAXABLE PARTY. | No. of Concession, Name of Street, or other Designation, or other | NAME OF TAXABLE PARTY.                |                        | and the second s | And in case of the local division of the loc |          |   |                |
| 8   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | e ( mit                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No.      |   | END AT<br>8.94 |
| 8   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | 3              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |   | END AT<br>8.94 |
| 8   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |   | END AT<br>8.94 |
| 8   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *                                     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |   | END AT<br>8.94 |
| 8   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |   | END AT<br>8.94 |
| 8   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                               | Project No: C  |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         | Geot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | technical Ir<br>Primary Sch<br>Juncti | nvestigat<br>pool at W | ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Box : 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of 1     |   | END AT<br>8.94 |



| Eng               | jinee                                              | erin                                        | g Log - E                     | 30           | reh                               | ole                                 |                                             |                                                 | F                                                                                                          | Project No.:                                          | GG1 <sup>-</sup>                       | 1529.                           | 001                                                                                                                             |
|-------------------|----------------------------------------------------|---------------------------------------------|-------------------------------|--------------|-----------------------------------|-------------------------------------|---------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Hol               | ent:<br>oject Na<br>le Loca<br>le Posi             | ition:                                      | Wilton J                      | nnic<br>lunc | al Inv                            | vestiga<br>Schoo                    | I, Wilto                                    | on                                              | Junction School C                                                                                          | Commenced:<br>Completed:<br>.ogged By:<br>Checked By: | 28/5/2<br>28/5/2<br>JK<br>MG           |                                 |                                                                                                                                 |
|                   | l Mode<br>le Dian                                  |                                             | -                             |              | njin D<br>5 mm                    | B8                                  |                                             |                                                 |                                                                                                            | RL Surface: 167<br>Datum: AH                          | .20 m                                  |                                 | perator: AC                                                                                                                     |
| ПОГ               |                                                    |                                             | ng Informati                  |              | 5 11111                           |                                     |                                             |                                                 | Soil Descriptio                                                                                            |                                                       | <u> </u>                               | 0                               | Observations                                                                                                                    |
| Method<br>Support | ion                                                | Groundwater<br>Levels                       | Samples &<br>Field Tests      | Recovery     | RL<br>(m)                         | Depth<br>(m)                        | Graphic Log                                 | Group<br>Symbol                                 | Material Descript<br>Fraction, Colour, Structur<br>Plasticity, Sensitivity, A                              | ion<br>e, Bedding,                                    | Moisture<br>Condition                  | Consistency<br>Relative Density | Structure and<br>Additional Observations                                                                                        |
|                   |                                                    |                                             |                               | T            |                                   |                                     | ×                                           | CI                                              | TOPSOIL Silty CLAY: medium p                                                                               | lasticity, dark brown.                                | м                                      |                                 | TOPSOIL                                                                                                                         |
|                   |                                                    |                                             | 0.50m<br>SPT<br>3,4,7<br>N=11 |              |                                   | -                                   | א <sup>ן ו</sup> אן או<br>ו, ו, ו, ו, ו, ו, | CI<br>/CH                                       | Silty CLAY: medium to high plas<br>pale grey.                                                              | ticity, orange brown w                                | th<br>M                                | F to<br>St                      | RESIDUAL SOIL                                                                                                                   |
|                   |                                                    |                                             | ).95m<br>1.00m                |              | 5.2                               | - 1                                 | ×                                           | CI                                              | 0.90m<br>Silty CLAY: medium to high plas                                                                   | ticity, pale grey with                                |                                        | St                              |                                                                                                                                 |
| AD/T              |                                                    | 8                                           | SPT<br>3,14,22<br>N=36        |              | 166.                              | -                                   | ×                                           | /CH                                             | orange brown.                                                                                              |                                                       | M<br>M/D                               | VSt                             | ROCK                                                                                                                            |
|                   |                                                    |                                             | 1.45m                         |              |                                   | -                                   |                                             |                                                 | SHALE: dark brown and orange<br>with clay seams. Estimate very lo                                          |                                                       | D                                      |                                 | NOK                                                                                                                             |
|                   |                                                    |                                             |                               |              | <br>165.2                         | 2-                                  |                                             |                                                 | 2.25m                                                                                                      |                                                       |                                        |                                 |                                                                                                                                 |
|                   |                                                    |                                             |                               |              | <br>164.2                         |                                     |                                             |                                                 | Continued on cored borehole sh                                                                             | eet                                                   |                                        |                                 |                                                                                                                                 |
|                   |                                                    |                                             |                               |              | <br>163.2                         | -<br>-<br>4<br>-                    |                                             |                                                 |                                                                                                            |                                                       |                                        |                                 |                                                                                                                                 |
|                   |                                                    |                                             |                               |              | <br>162.2                         | -<br>-<br>5<br>-                    |                                             |                                                 |                                                                                                            |                                                       |                                        |                                 |                                                                                                                                 |
| AD\<br>ADT<br>RR  | <pre> // // // // // // // // // // // // //</pre> | Screv<br>V Bit<br>Tung:<br>de Bit<br>Roller |                               | o re<br>rang | tion<br>sistand<br>ing to<br>usal | [<br>-                              | ⊻ Lev<br>> Infl<br>⊲ Pa                     | Vater<br>vel (Dat<br>low<br>rtial Los<br>mplete | SPT - Standard Penetration<br>s PP - Pocket Penetrometer                                                   | D - Dr<br>M - M<br>Test W - W                         | y<br>pist<br>et<br>pisture<br>astic Li | Conte                           | <u>Consistency/Relative Densi</u><br>VS - Very Soft<br>S - Soft<br>F - Firm<br>ent VSt - Very Stiff<br>H - Hard<br>Fr - Friable |
|                   | <u>Supp</u><br>C - Ca                              | ort                                         |                               | <u>Gr</u>    | Core                              | Log/Co<br>recove<br>ates ma<br>loss | red (ha                                     |                                                 | <u>Classification Symbo</u><br><u>and Soil Description</u><br>Based on Unified So<br>Classification System | <u>ols</u><br>is<br>il                                |                                        |                                 | VL - Very Loose<br>L - Loose<br>MD - Medium Dense<br>D - Dense<br>VD - Very Dense                                               |



|        | Clie         |                               |         |         | 3-          |                                                |               | red Borehole<br>SMEC                                                                                                                                                             |                  | Commen                                                                      | o.: G                                                                                                                                                     | 8/5/2024                                                                                              |                                                                                    |
|--------|--------------|-------------------------------|---------|---------|-------------|------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| F      | Proj<br>Hole | ect<br>e Lo<br>e Po           | cat     | ion:    |             | Geote<br>Wiltor                                | chnic<br>Junc | al Investigation: Wilton Junction School<br>tion School, Wilton<br>86273.0 m E 6212265.9 m N MGA2020-56                                                                          |                  | Complete<br>Logged B<br>Checked                                             | ed: 2<br>Sy: J                                                                                                                                            | 8/5/2024<br>K<br>IG                                                                                   |                                                                                    |
|        |              |                               |         |         |             | unting:<br>ngth:                               |               | njin DB8 Inclination: -90<br>pped Face 3 m Bearing:                                                                                                                              | þ                | RL Surfac<br>Datum:                                                         | ce: 167.2<br>AHD                                                                                                                                          | 20 m<br>Operator:                                                                                     | AC                                                                                 |
|        | Dr           | rillin                        | ng I    | nfo     | rmati       | ion                                            |               | Rock Substance                                                                                                                                                                   |                  |                                                                             |                                                                                                                                                           | Rock Mass I                                                                                           | Defects                                                                            |
| Method | Support      | Water                         | TCR (%) | RQD (%) | RL<br>(m)   | Depth<br>(m)                                   | Graphic Log   | Material Description<br>rock type: grain characteristics, colour,<br>structure, minor components                                                                                 | Weathering       | Strength<br>UCS=-↓ <sub>(50)</sub><br>● - Axial<br>O - Diametral<br>■ - UCS | Average<br>Defect<br>Spacing<br>(mm)                                                                                                                      | thickness, type                                                                                       | t Description<br>, inclination, planarity,<br>s, coating/infilling                 |
|        |              |                               |         |         | 165.2 166.2 |                                                |               |                                                                                                                                                                                  |                  |                                                                             |                                                                                                                                                           |                                                                                                       |                                                                                    |
|        |              | 100% Water Return             | 100     | 20      |             |                                                |               | 2.25m Continued from non-cored borehole sheet<br>SHALE: pale grey with dark brown and orange<br>brown, laminated at 0-10°.<br>2.63m<br>SANDSTONE: fine to medium grained, orange | MW               |                                                                             |                                                                                                                                                           | clay, SM<br>-^ J, 85°, clay, IR, RI<br>P, 2°, PR, RF<br>-> clay, SM                                   | =                                                                                  |
|        |              | -0-                           |         |         | <br>164.2   | 3                                              |               | 3.41m<br>SHALE: dark grey with pale grey, laminated at<br>0-10°.                                                                                                                 | MW<br>/<br>SW    |                                                                             |                                                                                                                                                           | ¬, 0°, PR, RF<br>−P, 0°, PR, SM<br>−P, 0°, PR, RF<br>−P, 3°, PR, SM<br>¬P, 0°, PR, SM                 |                                                                                    |
| NIMILC |              | 100% Water Return             | 100     | 95      | <br>163.2   | 4                                              |               | 4.20m<br>SANDSTONE: fine grained, pale grey with dark<br>grey and orange brown, bedded at 0-15°.                                                                                 | FR               |                                                                             |                                                                                                                                                           | — HB<br>— P<br>— P, 0°, PR, RF                                                                        |                                                                                    |
|        |              |                               | 0       |         | <br>162.2   | 5                                              |               |                                                                                                                                                                                  | sw               |                                                                             |                                                                                                                                                           | – HB<br>– HB<br>– P, 2°, PR, RF<br>– P, 0°, PR, RF<br>– P, 0°, clay VN, PR<br>– P, 0°, PR, RF<br>– DB | , RF                                                                               |
|        |              |                               |         | letho   |             |                                                |               | Water Graphic Log/Core                                                                                                                                                           | Loss             |                                                                             | Weathering                                                                                                                                                | <u>a</u>                                                                                              | Strength                                                                           |
|        |              | AS<br>WB<br>HQ3<br>NQ3<br>NML | -       | Was     | shhore      | rewing<br>e<br>Barrel<br>e Barrel<br>ore Barre | əl            | <ul> <li>✓ Level (Date)</li> <li>✓ Inflow</li> <li>✓ Partial Loss</li> <li>✓ Complete Loss</li> <li>✓ Support</li> <li>T - Timbering</li> </ul>                                  | d (hato<br>rial) | ching FR<br>SW<br>MW<br>DW<br>HW<br>XW<br>RS                                | <ul> <li>Fresh</li> <li>Slightly Wea</li> <li>Moderately</li> <li>Distinctly W</li> <li>Highly Weat</li> <li>Extremely V</li> <li>Residual Sci</li> </ul> | athered V<br>Weathered M<br>eathered H<br>thered V<br>Veathered E<br>il                               | L - Very Low<br>- Low<br>- Medium<br>- High<br>H - Very High<br>H - Extremely High |



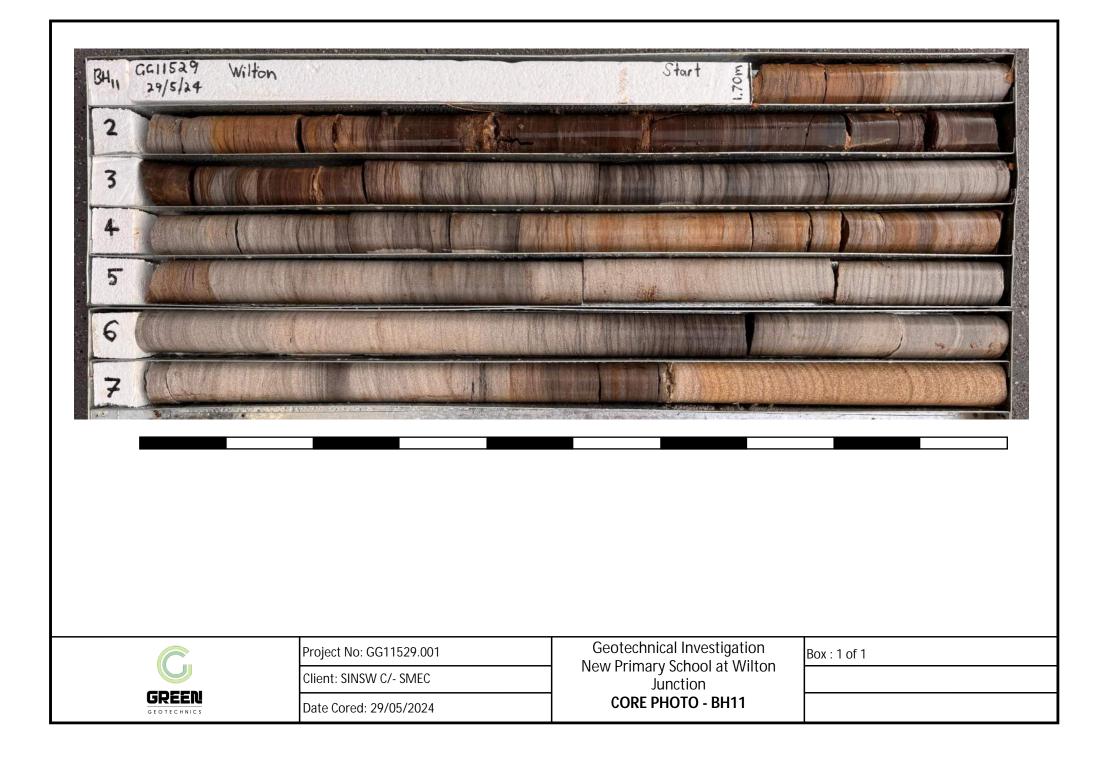
|        | Cliei<br>Proj<br>Hole<br>Hole | ect<br>e Lo                   | cati    | on:               |                                      | Geote<br>Wiltor                      | echnic<br>n Junc                      | SMEC<br>al Investigation: Wilton Junction School<br>tion School, Wilton<br>86273.0 m E 6212265.9 m N MGA2020-56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |   | Commence<br>Complete<br>Logged By<br>Checked I                                          | d: 2<br>y: J                                                                                                | 28/5/2024<br>28/5/2024<br>IK<br>AG                                 |                                                                                                          |
|--------|-------------------------------|-------------------------------|---------|-------------------|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|        |                               |                               |         |                   | l Mou<br>d Ler                       | nting:<br>ath:                       |                                       | njin DB8 Inclination: ·<br>pped Face 3 m Bearing:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -90°       |   | RL Surfac<br>Datum:                                                                     | e: 167.2<br>AHD                                                                                             | 20 m<br>Operator:                                                  | AC                                                                                                       |
|        |                               |                               |         |                   | rmati                                | -                                    |                                       | Rock Substance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |   |                                                                                         |                                                                                                             | Rock Mass                                                          |                                                                                                          |
| Method | Support                       | Water                         | TCR (%) | RQD (%)           | RL<br>(m)                            | Depth<br>(m)                         | Graphic Log                           | Material Description<br>rock type: grain characteristics, colour,<br>structure, minor components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Weathering | 0 | Strength<br>UCS=·I <sub>t(00)</sub><br>← Axial<br>⊃ - Diametral<br>■ - UCS<br>□ 至 표 듯 표 | Average<br>Defect<br>Spacing<br>(mm)                                                                        | thickness, typ                                                     | ct Description<br>e, inclination, planarity,<br>s, coating/infilling                                     |
| NMLC   |                               | 100% Water Return             | 100     | 66                | 159.2 160.2                          |                                      |                                       | SANDSTONE: fine grained, pale grey with dat<br>grey and orange brown, bedded at<br>0-15°.(continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sw         |   |                                                                                         |                                                                                                             | −HB<br>∼P, 0°, PR, RF<br>−HB                                       |                                                                                                          |
|        |                               |                               |         |                   | 157.2 158.2                          | 9                                    | · · · · · · · · · · · · · · · · · · · | 8.84m<br>Hole Terminated at 8.84 m<br>Target depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |   |                                                                                         |                                                                                                             |                                                                    |                                                                                                          |
|        |                               |                               |         |                   | <br>156.2                            | -<br>11<br>-<br>-<br>-               |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |   |                                                                                         |                                                                                                             |                                                                    |                                                                                                          |
|        |                               | AS<br>WB<br>HQ3<br>NQ3<br>NML | -       | Was<br>HQ3<br>NQ3 | er Scr<br>shbore<br>3 Core<br>3 Core | ewing<br>Barrel<br>Barrel<br>re Barr | el                                    | Water     Graphic Log/C            ∑ Level (Date)<br>□ Inflow           ☐ Core recover<br>□ indicates n<br>Core loss             ☐ Partial Loss           ☐ Core recover<br>☐ Core recover | vered (hat |   | MW -<br>DW -<br>HW -<br>XW -                                                            | Weatherin<br>Fresh<br>Slightly We<br>Moderately<br>Distinctly W<br>Highly Wea<br>Extremely V<br>Residual So | athered L<br>Weathered M<br>/eathered H<br>thered \<br>Veathered E | <u>Strength</u><br>/L - Very Low<br>- Low<br>Medium<br>H - High<br>/H - Very High<br>EH - Extremely High |

| 4<br>5<br>6<br>7<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | 3      |                       |                 |                                                    |                             | 2211  |
|------------------------------------------------------------------------------------------------------------|--------|-----------------------|-----------------|----------------------------------------------------|-----------------------------|-------|
| 6<br>7<br>8                                                                                                | 4      |                       |                 |                                                    |                             |       |
| 7<br>8                                                                                                     | 5      |                       |                 |                                                    | Leann                       |       |
| 8 End                                                                                                      | 6      |                       |                 |                                                    |                             | -1-10 |
| 8 End                                                                                                      | 7      |                       | TOPAL AL AL     |                                                    |                             |       |
|                                                                                                            | 8      |                       |                 |                                                    |                             | End   |
|                                                                                                            | TO A S | Contractor Contractor | · · ·           |                                                    |                             | 8.8   |
|                                                                                                            |        |                       |                 |                                                    |                             |       |
|                                                                                                            |        |                       |                 |                                                    |                             |       |
|                                                                                                            |        |                       |                 |                                                    |                             |       |
|                                                                                                            |        |                       |                 |                                                    |                             |       |
| Client: SINSW C/- SMEC                                                                                     |        |                       | No: GG11529.001 | Geotechnical Investigat<br>New Primary School at W | ion Box : 1 of <sup>*</sup> | 1     |



Borehole No.

BH11


| Ξr       | ngi        | inee                                                 | rin                             | g Log - E                                      | Зо           | reh                                        | ole                          |                         |                 |                                                                                          | Project No.:                                          | Ċ                                                     | G11                   | 529.                            | .001                                                                                                            |
|----------|------------|------------------------------------------------------|---------------------------------|------------------------------------------------|--------------|--------------------------------------------|------------------------------|-------------------------|-----------------|------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------|
| F        | lole       | nt:<br>ect Na<br>e Loca<br>e Posit                   | tion:                           | Wilton J                                       | nnic<br>lunc | al Inv                                     | restiga<br>School            | , Wilto                 | on              | Junction School<br>9 m N MGA2020-56                                                      | Commenced:<br>Completed:<br>Logged By:<br>Checked By: | 2<br>J                                                |                       | 2025<br>2025                    |                                                                                                                 |
|          |            | Mode<br>Diam                                         |                                 | -                                              |              | njin D<br>5 mm                             | B8                           |                         |                 | Inclination: -90°<br>Bearing:                                                            |                                                       | 165.6<br>AHD                                          | 60 m                  | 0                               | perator: AC                                                                                                     |
| <u> </u> |            |                                                      |                                 | ing Informati                                  |              | ,                                          |                              |                         |                 | Soil Descr                                                                               |                                                       |                                                       |                       |                                 | Observations                                                                                                    |
| Method   | Support    |                                                      | Groundwater<br>Levels           | -                                              | Recovery     | RL<br>(m)                                  | Depth<br>(m)                 | Graphic Log             | Group<br>Symbol | Material De<br>Fraction, Colour, Str<br>Plasticity, Sensitiv                             | ucture, Bedding,                                      |                                                       | Moisture<br>Condition | Consistency<br>Relative Density | Structure and<br>Additional Observations                                                                        |
|          |            |                                                      |                                 |                                                |              |                                            |                              | ×                       | CI              | TOPSOIL Silty CLAY: medi                                                                 | um plasticity, dark brov                              | wn.                                                   | М                     |                                 | TOPSOIL                                                                                                         |
|          |            |                                                      |                                 |                                                |              |                                            |                              | ×                       | CI<br>/CH       | Silty CLAY: medium to high<br>0.40m pale grey.                                           | plasticity, orange brov                               | vn with                                               | M                     | F to<br>St                      | RESIDUAL SOIL                                                                                                   |
|          |            |                                                      |                                 | 0.50m<br>SPT<br>3,4,17<br>N=21<br>S11 at 0.60m |              |                                            |                              | <br>*                   | CI              | Silty CLAY: medium plastic<br>brown, trace of fine grained<br>weathered sandstone).      | ity, pale grey with oran sand; (completely            |                                                       | M / D                 | St                              |                                                                                                                 |
| AU/I     |            |                                                      |                                 | 0.95m                                          |              | <br>164.6                                  | 1                            |                         |                 | SANDSTONE: fine grained<br>grey, with clay seams. Estir<br>(Class 5).                    |                                                       |                                                       | D                     |                                 | ROCK                                                                                                            |
|          |            |                                                      |                                 |                                                |              |                                            | -                            |                         |                 | 1.70m<br>Continued on cored boreho                                                       | le sheet                                              |                                                       |                       |                                 |                                                                                                                 |
|          |            |                                                      |                                 |                                                |              | <br>163.6                                  | 2                            |                         |                 |                                                                                          |                                                       |                                                       |                       |                                 |                                                                                                                 |
|          |            |                                                      |                                 |                                                |              | <br>162.6                                  | 3                            |                         |                 |                                                                                          |                                                       |                                                       |                       |                                 |                                                                                                                 |
|          |            |                                                      |                                 |                                                |              | <br>161.6                                  | 4                            |                         |                 |                                                                                          |                                                       |                                                       |                       |                                 |                                                                                                                 |
|          |            |                                                      |                                 |                                                |              | <br>160.6                                  | 5                            |                         |                 |                                                                                          |                                                       |                                                       |                       |                                 |                                                                                                                 |
| A        | ADV<br>ADT | Metho<br>Auger<br>Auger<br>Auger<br>Carbid<br>Rock F | Screv<br>V Bit<br>Tung<br>e Bit |                                                | o re<br>rang | t <u>ion</u><br>sistand<br>ing to<br>iusal |                              | ⊻ Lev<br>> Infl<br>⊲ Pa | rtial Los       | SPT - Disturbed Samp<br>SPT - Standard Penet<br>SS PP - Pocket Penetror                  | nple D<br>le M<br>ration Test W<br>neter w            | sture<br>- Dry<br>- Mois<br>- Wet<br>- Mois<br>- Plas | st<br>sture           | Conte                           | <u>Consistency/Relative Densi</u><br>VS - Very Soft<br>S - Soft<br>F - Firm<br>ent VSt - Very Stiff<br>H - Hard |
|          | NB-        | Washt<br><u>Suppo</u><br>- Ca                        | oore<br>o <u>rt</u>             |                                                | <u>Gr</u>    | Core                                       | Log/Co<br>recover<br>ates ma | ore Los<br>red (ha      |                 | <u>Classification S</u><br><u>and Soil Descri</u><br>Based on Unifie<br>Classification S | LL<br><u>ymbols</u><br>p <u>tions</u><br>d Soil       | - Liqu                                                |                       |                                 | Fr - Friable<br>VL - Very Loose<br>L - Loose<br>MD - Medium Dense<br>D - Dense<br>VD - Very Dense               |



| F      | lole    | nt:<br>ect l<br>e Lo<br>e Po  | cati    | on:                                     |                | Geote<br>Wiltor                        | echnio<br>n Juno | SMEC<br>cal Investigation: Wilton Junction School<br>ction School, Wilton<br>86307.5 m E 6212300.9 m N MGA2020-56                                                                                                                                                                                             | Commen<br>Complete<br>Logged B<br>Checked                                                                            | ed:<br>by:                                                                                               | 29/5/2025<br>29/5/2025<br>JK<br>MG                                                                                                                      |
|--------|---------|-------------------------------|---------|-----------------------------------------|----------------|----------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |         |                               |         |                                         | l Mou<br>d Lei | inting:<br>ngth:                       |                  | njin DB8 Inclination: -90°<br>pped Face 3 m Bearing:                                                                                                                                                                                                                                                          | RL Surfac<br>Datum:                                                                                                  |                                                                                                          | 65.60 m<br>HD Operator: AC                                                                                                                              |
|        | Dr      | illin                         | g li    | nfoi                                    | rmati          | on                                     |                  | Rock Substance                                                                                                                                                                                                                                                                                                |                                                                                                                      |                                                                                                          | Rock Mass Defects                                                                                                                                       |
| Method | Support | Water                         | TCR (%) | RQD (%)                                 | RL<br>(m)      | Depth<br>(m)                           | Graphic Log      | Material Description<br>rock type: grain characteristics, colour,<br>structure, minor components                                                                                                                                                                                                              | Strength<br>$UCS = \cdot I_{4(50)}$<br>$\bullet - Axial$<br>$\circ - Diametral$<br>$\bullet - UCS$<br>$\neg z \pm 5$ | Average<br>Defect<br>Spacing<br>(mm)                                                                     | t Defect Description<br>9 thickness, type, inclination, planarity<br>roughness, coating/infilling                                                       |
|        |         |                               |         |                                         | <br>164.6      | -<br>-<br>-<br>1<br>-                  |                  |                                                                                                                                                                                                                                                                                                               |                                                                                                                      |                                                                                                          |                                                                                                                                                         |
|        |         | 100% Water Return             | 100     | 74                                      | 163.6          |                                        |                  | 1.70m       Continued from non-cored borehole sheet         SANDSTONE: fine grained, orange brown with pale grey and dark grey bands, bedded at 0-10°.       SW         2.30m       SANDSTONE: fine grained, dark brown with dark grey, orange brown and pale grey, with shale interbeds, laminated at 0-10°. |                                                                                                                      |                                                                                                          |                                                                                                                                                         |
|        |         |                               |         |                                         | <br>162.6      |                                        |                  | 3.30m<br>SANDSTONE: fine grained, pale grey with orange<br>brown, dark grey bands, bedded at 0-10°.                                                                                                                                                                                                           |                                                                                                                      |                                                                                                          | - P, 10°, PR, RF<br>  DB<br>  HB<br>  clay, SM<br>  P, 5°, RF<br>  clay, SM<br>  clay, SM<br>  clay, SM<br>  clay, SM                                   |
| NMLC   |         | 100% Water Return             | 100     | 85                                      | <br>161.6      |                                        |                  | sw                                                                                                                                                                                                                                                                                                            |                                                                                                                      |                                                                                                          | - P, 0°, PR, RF<br>- P, 0°, PR, SM<br>- HB<br>- P, 0°, PR, SM<br>- P, 0°, PR, SM                                                                        |
|        |         | 100% V                        |         |                                         | <br>160.6      | 5-                                     |                  | 5.06m<br>SANDSTONE: fine grained, pale grey with dark<br>grey bands, bedded at 0-10°.                                                                                                                                                                                                                         |                                                                                                                      |                                                                                                          | P, 0°, PR, SM<br>P, 0°, PR, SM<br>P, 0°, PR, SM<br>P, 0°, PR, SM<br>J, 20°, IR, RF                                                                      |
|        |         |                               | 100     | 66                                      |                | -                                      |                  | grey bands, bedded at 0-10 .                                                                                                                                                                                                                                                                                  |                                                                                                                      |                                                                                                          | P, 0°, PR, SM<br>DB                                                                                                                                     |
|        | :       | AS<br>WB<br>HQ3<br>NQ3<br>NML | _       | etho<br>Aug<br>Was<br>HQ3<br>NQ3<br>NMI | or Scr         | rewing<br>Barrel<br>Barrel<br>re Barre | el               | Water       Graphic Log/Core Loss                                                                                                                                                                                                                                                                             | <br>ng FR<br>SW<br>MW<br>DW<br>HW<br>XW<br>RS                                                                        | Weathe<br>- Fresh<br>- Slightly V<br>- Moderate<br>- Distinctly<br>- Highly W<br>- Extreme<br>- Residual | VL - Very Low<br>Weathered L - Low<br>tely Weathered M - Medium<br>y Weathered H - High<br>Veathered VH - Very High<br>Jv Weathered EH - Extremely High |



| Pro<br>Hol | ent:<br>oject<br>le Lo<br>le Po | ocat          | ion:       |                                      | Geote<br>Wiltor                       | echnic<br>n Junc | SMEC<br>al Investigation: Wilton Junction School<br>stion School, Wilton<br>86307.5 m E 6212300.9 m N MGA2020-56                                                                                                      |            | Co<br>Lo | ommeno<br>omplete<br>ogged B<br>hecked                                       | d: 2<br>y: J                                                                                                                                       | 9/5/2025<br>9/5/2025<br>K<br>1G                                           |                                                                                                         |
|------------|---------------------------------|---------------|------------|--------------------------------------|---------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
|            |                                 |               |            | l Mou<br>d Ler                       | nting:<br>ngth:                       |                  | njin DB8 Inclination: -90<br>pped Face 3 m Bearing:                                                                                                                                                                   | )°         |          | L Surfac<br>atum:                                                            | e: 165.6<br>AHD                                                                                                                                    | 60 m<br>Operator:                                                         | AC                                                                                                      |
| D          | rillir                          | ng l          | nfoi       | rmati                                | on                                    |                  | Rock Substance                                                                                                                                                                                                        |            |          |                                                                              |                                                                                                                                                    | Rock Mass                                                                 | Defects                                                                                                 |
| Support    | Water                           | TCR (%)       | RQD (%)    | RL<br>(m)                            | Depth<br>(m)                          | Graphic Log      | Material Description<br>rock type: grain characteristics, colour,<br>structure, minor components                                                                                                                      | Weathering | U(<br>0- | rength<br>CS=·l <sub>(50)</sub><br>- Axial<br>Diametral<br>I- UCS<br>≅ ⊥ 듯 ᇳ | Average<br>Defect<br>Spacing<br>(mm)                                                                                                               | thickness, typ                                                            | ct Description<br>e, inclination, planarity,<br>ss, coating/infilling                                   |
|            | 100% Water Return               | 100           | 66         | 154.6 155.6 157.6 158.6 157.6 158.6  |                                       |                  | SANDSTONE: fine grained, pale grey with dark<br>grey bands, bedded at 0-10° <i>(continued)</i>                                                                                                                        | FR         |          |                                                                              |                                                                                                                                                    | - P, 0°, PR, RF<br>- HB<br>- P, 0°, PR, SM<br>- P, 0°, PR, SM<br>Clay, SM |                                                                                                         |
|            | AS<br>WB<br>HQ3<br>NQ3<br>NMI   | -<br>3-<br>3- | HQ3<br>NQ3 | er Scr<br>shbore<br>3 Core<br>3 Core | ewing<br>Barrel<br>Barrel<br>re Barre | el               | Water     Graphic Log/Con            ∠         Level (Date)         Inflow         ✓         Partial Loss         ✓         Complete Loss         Support         T         - Timbering           ☐         Core loss | ed (hat    |          | SW<br>MW<br>DW<br>HW<br>XW                                                   | Weathering         Fresh         Slightly Weat         Moderately         Distinctly W         Highly Weat         Extremely V         Residual So | athered  <br>Weathered  <br>eathered  <br>thered  <br>Veathered           | Strength<br>VL - Very Low<br>L - Low<br>M - Medium<br>H - High<br>VH - Very High<br>EH - Extremely High |





Borehole No.

BH12

| (<br>F<br>H | Clier<br>Proje<br>Hole | nt:<br>ect Na<br>Loca                                      | ame:<br>tion:                            | Wilton .                      | C/-<br>hnic<br>Junc | SME                                        | C<br>vestiga<br>Schoo               | I, Wilt               | on                                                    | Junction School                                                                           | Commenced:<br>Completed:<br>Logged By:             | 29/5/<br>29/5/<br>JK                   |                                 |                                                                                                                                                            |
|-------------|------------------------|------------------------------------------------------------|------------------------------------------|-------------------------------|---------------------|--------------------------------------------|-------------------------------------|-----------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                        | Posit                                                      |                                          |                               |                     | 86328<br>njin D                            | -                                   | E 621                 | 2295.9                                                | 9 m N MGA2020-56                                                                          | Checked By:<br>RL Surface: 164                     | MG<br>.80 m                            | 1                               |                                                                                                                                                            |
|             |                        | Dian                                                       |                                          | 0                             |                     | 5 mm                                       |                                     |                       |                                                       | Bearing:                                                                                  | Datum: AH                                          |                                        |                                 | perator: AC                                                                                                                                                |
|             |                        |                                                            | Drill                                    | ling Informat                 | ion                 |                                            |                                     |                       |                                                       | Soil Desci                                                                                | ription                                            |                                        |                                 | Observations                                                                                                                                               |
| Method      | Support                | Penetration                                                | Groundwater<br>Levels                    | Samples &<br>Field Tests      | Recovery            | RL<br>(m)                                  | Depth<br>(m)                        | Graphic Log           | Group<br>Symbol                                       | Material De<br>Fraction, Colour, St<br>Plasticity, Sensiti                                | ructure, Bedding,                                  | Moisture<br>Condition                  | Consistency<br>Relative Density | Structure and<br>Additional Observations                                                                                                                   |
|             |                        |                                                            |                                          |                               |                     |                                            |                                     | ×                     | CI                                                    | TOPSOIL Silty CLAY: med                                                                   | ium plasticity, dark brown.                        | М                                      |                                 | TOPSOIL                                                                                                                                                    |
|             |                        |                                                            |                                          | 0.50m<br>SPT<br>4,6,7         |                     |                                            | -                                   |                       | CI<br>/CH                                             | 0.30m<br>Silty CLAY: medium to high<br>pale grey.                                         | n plasticity, orange brown w                       | ith<br>M                               | F to<br>St                      | RESIDUAL SOIL                                                                                                                                              |
| AD/T        |                        |                                                            |                                          | N=13<br>S12 at 0.70m<br>0.95m |                     | 8                                          | -                                   | ×                     |                                                       | 0.90m                                                                                     |                                                    |                                        | St                              | -                                                                                                                                                          |
|             |                        |                                                            |                                          |                               |                     | 163.8                                      | 1                                   | ×                     | CI                                                    | Silty CLAY: medium plastic<br>brown, trace of fine grained<br>1.20m weathered sandstone). | lity, pale grey with orange<br>I sand; (completely | м/с                                    | VSt                             | 2001                                                                                                                                                       |
|             |                        |                                                            |                                          |                               |                     |                                            | -                                   |                       |                                                       | SHALE: fine to medium gra<br>grey and orange brown, wit<br>interbeds. Estimate very low   | th clay seams and sandstor                         | ne<br>D                                |                                 | ROCK                                                                                                                                                       |
|             |                        |                                                            |                                          |                               |                     |                                            | -                                   |                       | -                                                     | Continued on cored boreho                                                                 | le sheet                                           |                                        |                                 |                                                                                                                                                            |
|             |                        |                                                            |                                          |                               |                     | 162.8                                      | 2                                   |                       |                                                       |                                                                                           |                                                    |                                        |                                 |                                                                                                                                                            |
|             |                        |                                                            |                                          |                               |                     | 161.8                                      | 3-                                  |                       |                                                       |                                                                                           |                                                    |                                        |                                 |                                                                                                                                                            |
|             |                        |                                                            |                                          |                               |                     | 160.8                                      |                                     |                       |                                                       |                                                                                           |                                                    |                                        |                                 |                                                                                                                                                            |
|             |                        |                                                            |                                          |                               |                     | 159.8                                      | -<br>-<br>5<br>-                    |                       |                                                       |                                                                                           |                                                    |                                        |                                 |                                                                                                                                                            |
| /<br>/<br>F | AD¥<br>AD∓<br>RR -     | Metho<br>Auger<br>Auger<br>Auger<br>Carbic<br>Rock<br>Wash | Scre<br>V Bit<br>Tunç<br>le Bit<br>Rolle | t<br>gsten                    | lo re<br>rang       | <u>tion</u><br>sistanc<br>jing to<br>fusal | [                                   | ⊻ Le<br>> Inf<br>⊲ Pa | <u>Vater</u><br>vel (Dat<br>ow<br>rtial Los<br>mplete | SPT - Standard Penet<br>SPT - Pocket Penetro                                              | mple D - Di<br>ble M - M<br>ration Test W - W      | y<br>oist<br>et<br>oisture<br>astic Li | Conte                           | Consistency/Relative Dens         VS - Very Soft         S - Soft         F - Firm         ent       VSt - Very Stiff         H - Hard         F - Firable |
|             | C                      | Supp                                                       | ort                                      |                               | <u>Gr</u>           | Core                                       | Log/Co<br>recove<br>ates ma<br>loss | red (ha               |                                                       | <u>Classification S</u><br><u>and Soil Descri</u><br>Based on Unifie<br>Classification S  | <b>ymbols</b><br>i <b>ptions</b><br>ed Soil        |                                        |                                 | VL - Very Loose<br>L - Loose<br>MD - Medium Dense<br>D - Dense<br>VD - Very Dense                                                                          |



| F<br>F   | lole<br>lole | ect  <br>Lo<br>Po | cati<br>siti | ion:<br>on: |                                      | Geote<br>Wiltor<br>See F                       | echnic<br>1 Juno<br>Plan 2 | SMEC<br>al Investigation: Wilton Junction School<br>ction School, Wilton<br>86328.1 m E 6212295.9 m N MGA2020-56                                                                                                                                             |            | Commen<br>Complete<br>Logged E<br>Checked                                   | ed: 2<br>By: J<br>By: M                                                                                                                                           | 9/5/2025<br>9/5/2025<br>K<br>IG                                                                                                                                                                                     |   |
|----------|--------------|-------------------|--------------|-------------|--------------------------------------|------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|          |              |                   |              |             | l Mou<br>Id Lei                      | inting:<br>ngth:                               |                            | njin DB8 Inclination: -90°<br>pped Face 3 m Bearing:                                                                                                                                                                                                         |            | RL Surfa<br>Datum:                                                          | ce: 164.8<br>AHD                                                                                                                                                  | 0 m<br>Operator: AC                                                                                                                                                                                                 |   |
|          | Dr           | illin             | g li         | nfo         | rmati                                | on                                             |                            | Rock Substance                                                                                                                                                                                                                                               |            |                                                                             |                                                                                                                                                                   | Rock Mass Defects                                                                                                                                                                                                   |   |
| INIELIDU | Support      | Water             | TCR (%)      | RQD (%)     | RL<br>(m)                            | Depth<br>(m)                                   | Graphic Log                | Material Description<br>rock type: grain characteristics, colour,<br>structure, minor components                                                                                                                                                             | Weathering | Strength<br>UCS=:[ <sub>(S0)</sub><br>● - Axial<br>O - Diametral<br>■ - UCS | Average<br>Defect<br>Spacing<br>(mm)                                                                                                                              | Defect Description<br>thickness, type, inclination,<br>roughness, coating/infil                                                                                                                                     |   |
|          |              |                   |              |             | 163.8                                | -<br>-<br>-<br>1                               |                            |                                                                                                                                                                                                                                                              |            |                                                                             |                                                                                                                                                                   |                                                                                                                                                                                                                     |   |
|          |              | 100% Water Return | 100          | 20          | 162.8                                | 2                                              |                            | 1.70m Continued from non-cored borehole sheet<br>SHALE: dark grey with pale grey and orange<br>brown, with clay seams.<br>1.99m<br>SANDSTONE: fine grained, pale grey with dark<br>grey and orange brown bands, with shale<br>interbeds, laminated at 0-10°. | EW         |                                                                             |                                                                                                                                                                   | ← CS, clay<br>← clay, SM<br>← P, 0°, PR, RF<br>← P, 0°, PR, RF<br>← P, 0°, PR, SM<br>← P, 0°, IR, RF<br>← P, 0°, IR, RF<br>← clay, SM<br>← P, 0°, clay VN, PR, RF<br>← P, 0°, PR, RF<br>← P, 0°, PR, RF             |   |
| NMLC     |              |                   |              |             | <br>161.8                            | 3—<br>3—<br>-<br>-                             |                            | 3.43m<br>SANDSTONE: fine grained, pale grey with dark<br>grey and orange brown bands, bedded at 0-10°.                                                                                                                                                       |            |                                                                             |                                                                                                                                                                   | - P, 0°, PR, RF<br>- clay, SM<br>- P, 0°, PR, SM<br>- P, 0°, PR, RF<br>- DB<br>- P, 0°, PR, SM<br>- clay, SM<br>- P, 0°, clay VN, PR, SM<br>- P, 0°, clay VN, PR, SM<br>- P, 0°, Clay VN, PR, SM<br>- P, 0°, PR, SM |   |
|          |              | 100% Water Return | 100          | 77          | <br>160.8                            | 4 —<br>4 —<br>–                                |                            |                                                                                                                                                                                                                                                              | SW         |                                                                             |                                                                                                                                                                   | P, 0°, PR, RF<br>P, 0°, PR, RF<br>P, 0°, PR, RF<br>clay, SM<br>P, 0°, PR, SM<br>P, 0°, PR, SM<br>P, 0°, PR, SM<br>P, 0°, PR, SM<br>HB<br>P, 0°, PR, RF<br>P, 0°, PR, RF                                             |   |
|          |              |                   |              |             | <br>159.8                            | 5                                              |                            | 5.53m<br>SANDSTONE: fine grained, pale grey with dark<br>grey bands, bedded at 0-10°.                                                                                                                                                                        | FR         |                                                                             |                                                                                                                                                                   | ← CS, clay<br>← P, 0°, PR, SM<br>← P, 0°, PR, RF<br>← P, 0°, PR, RF<br>← P, 0°, PR, SM<br>← P, 0°, PR, SM<br>← P, 0°, PR, RF                                                                                        |   |
|          |              |                   | M<br>100     | 8           | nd                                   |                                                |                            | Water Granhia Log/Cora                                                                                                                                                                                                                                       |            |                                                                             | Weathorin                                                                                                                                                         | DB                                                                                                                                                                                                                  |   |
|          |              | HQ3<br>NQ3        | -<br>-<br>-  | HQ:<br>NQ:  | er Scr<br>shbore<br>3 Core<br>3 Core | ewing<br>Barrel<br>Barrel<br>Barrel<br>re Barr | el                         | Water     Graphic Log/Core       ✓     Level (Date)       ○     Inflow       ✓     Partial Loss       ✓     Complete Loss       Support                                                                                                                      | l (hate    | ching FR<br>SW<br>MW<br>DW<br>HW<br>XW<br>RS                                | <ul> <li><u>Weathering</u></li> <li>Fresh</li> <li>Slightly Weat</li> <li>Distinctly W</li> <li>Highly Weat</li> <li>Extremely V</li> <li>Residual Soc</li> </ul> | VL - Very Lo<br>thered L - Low<br>Weathered M - Medium<br>eathered H - High<br>hered VH - Very Hid                                                                                                                  | N |



| Ξı      | ngi                           | ine               | e       | rin               | g L                                  | og -                                 | - Co             | red Borehole                                                                                                                                                                                       |            | Project No                                                                                                                              | p.: G                                                                                                                      | G11529.001                                                                                                                                                                                                                                                                    | Page 3 of 3                                                           |
|---------|-------------------------------|-------------------|---------|-------------------|--------------------------------------|--------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| F       | Cliei<br>Proj<br>Hole<br>Hole | ect<br>e Lo       | cati    | on:               |                                      | Geote<br>Wiltor                      | echnic<br>n Junc | SMEC<br>cal Investigation: Wilton Junction School<br>ction School, Wilton<br>86328.1 m E 6212295.9 m N MGA2020-56                                                                                  |            | Commend<br>Complete<br>Logged B<br>Checked                                                                                              | d: 29<br>y: Jł                                                                                                             |                                                                                                                                                                                                                                                                               |                                                                       |
|         |                               |                   |         |                   | l Mou<br>d Ler                       | inting:                              |                  | njin DB8 Inclination: -90<br>pped Face 3 m Bearing:                                                                                                                                                | 0          | RL Surfac<br>Datum:                                                                                                                     | e: 164.8<br>AHD                                                                                                            | 0 m<br>Operator:                                                                                                                                                                                                                                                              |                                                                       |
|         |                               |                   |         |                   | rmati                                | -                                    |                  | Rock Substance                                                                                                                                                                                     |            | <br>Dutum                                                                                                                               | 7110                                                                                                                       | Rock Mass                                                                                                                                                                                                                                                                     |                                                                       |
|         |                               |                   |         | -                 |                                      |                                      |                  |                                                                                                                                                                                                    |            |                                                                                                                                         |                                                                                                                            |                                                                                                                                                                                                                                                                               |                                                                       |
|         | Support                       | Water             | TCR (%) | RQD (%)           | RL<br>(m)                            | Depth<br>(m)                         | Graphic Log      | Material Description<br>rock type: grain characteristics, colour,<br>structure, minor components                                                                                                   | Weathering | Strength<br>$UCS=: l_{5(50)}$<br>$\bullet - Axial$<br>$\circ - Diametral$<br>$\blacksquare - UCS$<br>$\Box \Sigma \Sigma \Sigma \Sigma$ | Average<br>Defect<br>Spacing<br>(mm)                                                                                       | thickness, typ                                                                                                                                                                                                                                                                | ct Description<br>e, inclination, planarity,<br>ss, coating/infilling |
| ININICO |                               | 100% Water Return | 100     | 84                | 156.8 157.8                          |                                      |                  | SANDSTONE: fine grained, pale grey with dark<br>grey bands, bedded at 0-10°( <i>continued</i> )<br>8.37m<br>SANDSTONE: fine to coarse grained, pale grey<br>with dark grey bands, bedded at 5-15°. | FR         |                                                                                                                                         |                                                                                                                            | <ul> <li>P, 0°, PR, SM</li> <li>P, 0°, PR, SM</li> <li>J, 90°, IR, RF</li> <li>clay, SM</li> <li>P, 0°, clay VN, Pf</li> <li>P, 0°, PR, SM</li> <li>P, 0°, PR, SM</li> <li>P, 0°, Clay VN, Pf</li> <li>P, 0°, PR, SM</li> <li>P, 0°, PR, SM</li> <li>P, 0°, PR, SM</li> </ul> |                                                                       |
|         |                               |                   |         |                   | 155.8                                | 9-                                   |                  | 8.81m<br>Hole Terminated at 8.81 m<br>Target depth                                                                                                                                                 |            |                                                                                                                                         |                                                                                                                            | — P, 10°, PR, RF                                                                                                                                                                                                                                                              |                                                                       |
|         |                               |                   |         |                   | <br>154.8                            | -<br>-<br>10<br>-                    |                  |                                                                                                                                                                                                    |            |                                                                                                                                         |                                                                                                                            |                                                                                                                                                                                                                                                                               |                                                                       |
|         |                               |                   |         |                   | <br>153.8                            | -<br>-<br>11-<br>-<br>-<br>-         |                  |                                                                                                                                                                                                    |            |                                                                                                                                         |                                                                                                                            |                                                                                                                                                                                                                                                                               |                                                                       |
|         |                               | NQ3               |         | Was<br>HQ3<br>NQ3 | er Scr<br>shbore<br>3 Core<br>3 Core | ewing<br>Barrel<br>Barrel<br>re Barr |                  | Water     Graphic Log/Core                                                                                                                                                                         | d (hat     | MW<br>MW<br>DW<br>HW<br>XW                                                                                                              | Weathering     Fresh     Slightly Weat     Moderately V     Distinctly We     Highly Weat     Extremely W     Residual Soi | thered L<br>Veathered M<br>eathered H<br>nered \<br>eathered E                                                                                                                                                                                                                | A - Medium                                                            |





Borehole No.

**BH13** 

| Client:<br>Project Nar<br>Hole Locati<br>Hole Positio                                         | ne: Geotech<br>on: Wilton J                       | unction                                        | vestiga<br>Schoo | l, Wilte                                                     | on                               | Junction School<br>5 m N MGA2020-56                                                           | Commenced:<br>Completed:<br>Logged By:<br>Checked By:                                             | 30/5/<br>30/5/<br>JK<br>MG               |                                 |                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------|------------------|--------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drill Model<br>Hole Diame                                                                     | -                                                 | Hanjin D<br>105 mm                             |                  |                                                              |                                  | Inclination: -90°                                                                             | RL Surface: 164<br>Datum: AH                                                                      | 1.80 m                                   |                                 | perator: AC                                                                                                                                                                                                                                                                      |
|                                                                                               | rilling Informati                                 |                                                |                  |                                                              |                                  | Bearing:<br>Soil Desci                                                                        |                                                                                                   | <u> </u>                                 | 0                               | Observations                                                                                                                                                                                                                                                                     |
|                                                                                               | Samples &<br>Field Tests                          | Recovery<br>(m)                                | Depth<br>(m)     | Graphic Log                                                  | Group<br>Symbol                  | Material De<br>Fraction, Colour, Str<br>Plasticity, Sensiti                                   | scription<br>ructure, Bedding,                                                                    | Moisture<br>Condition                    | Consistency<br>Relative Density |                                                                                                                                                                                                                                                                                  |
|                                                                                               |                                                   |                                                |                  | ×                                                            | CI                               | TOPSOIL Silty CLAY: med                                                                       | ium plasticity, dark brown.                                                                       | M                                        |                                 | TOPSOIL                                                                                                                                                                                                                                                                          |
|                                                                                               | 0.50m<br>SPT<br>3,4,7<br>N=11                     |                                                | -                |                                                              | CI<br>/CH                        | Silty CLAY: medium to high<br>orange brown with pale gre                                      |                                                                                                   | м                                        | F to<br>St                      | RESIDUAL SOIL                                                                                                                                                                                                                                                                    |
|                                                                                               | 0.95m                                             | 163.8                                          | 1-               |                                                              | CI                               | 1.00m<br>CLAY: medium plasticity, p                                                           | ale grev with orange brown                                                                        | . M / F                                  | VSt                             |                                                                                                                                                                                                                                                                                  |
|                                                                                               |                                                   |                                                | -                | ×                                                            |                                  | 1.20m SHALE: pale grey with orar<br>with clay seams and sands<br>very low strength (Class 5). | nge brown and dark grey,<br>tone interbeds. Estimate                                              | D                                        | 000                             | ROCK                                                                                                                                                                                                                                                                             |
|                                                                                               |                                                   | 162.8                                          |                  |                                                              |                                  | 1.80m<br>Continued on cored boreho                                                            | le sheet                                                                                          |                                          |                                 |                                                                                                                                                                                                                                                                                  |
|                                                                                               |                                                   | 161.8                                          |                  |                                                              |                                  |                                                                                               |                                                                                                   |                                          |                                 |                                                                                                                                                                                                                                                                                  |
|                                                                                               |                                                   | 160.8                                          | 4                | -                                                            |                                  |                                                                                               |                                                                                                   |                                          |                                 |                                                                                                                                                                                                                                                                                  |
|                                                                                               |                                                   | <br>159.8                                      | 5                | -                                                            |                                  |                                                                                               |                                                                                                   |                                          |                                 |                                                                                                                                                                                                                                                                                  |
| Method<br>AS - Auger S<br>ADV Auger V<br>ADT Auger T<br>Carbide<br>RR - Rock Ri<br>WB- Washbo | crewing N<br>Bit<br>ungsten<br>Bit<br>Diler<br>re | etration<br>o resistan<br>anging to<br>refusal |                  | ⊻ Le <sup>;</sup><br>▷ Infl<br>⊲ Pa<br>◀ Co<br><u>ore Lo</u> | rtial Los<br>mplete<br><u>ss</u> | SPT - Standard Penet<br>SPT - Standard Penet<br>SS PP - Pocket Penetro                        | mple D - D<br>ble M - M<br>ration Test W - W<br>meter W - W<br>PL - P<br>LL - Li<br><u>ymbols</u> | ry<br>oist<br>′et<br>oisture<br>astic Li | Conte<br>mit                    | Consistency/Relative Dens         VS       Very Soft         S       - Soft         F       - Firm         ent       VSt       Very Stiff         H       - Hard         Fr       - Frinable         VL       - Very Loose         L       - Loose         MD       Medium Dense |



|          | _                          |                        |         |         | 3 -              | -                                                   |               | red Borehole                                                                                                                                                                                                                                                                        |            | Commercia                                                                   | ad: C                                                                                         | 20/5/2024                                                                                                                                                                                                                                                                        |                                                              |
|----------|----------------------------|------------------------|---------|---------|------------------|-----------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Pi<br>Hi | lien<br>roje<br>ole<br>ole | ect I<br>Lo            | cati    | on:     |                  | Geote<br>Wilton                                     | chnic<br>Junc | SMEC<br>al Investigation: Wilton Junction School<br>tion School, Wilton<br>86353.0 m E 6212292.5 m N MGA2020-56                                                                                                                                                                     |            | Commence<br>Completed<br>Logged By<br>Checked E                             | l: 3<br>:: J                                                                                  | 30/5/2024<br>30/5/2024<br>JK<br>MG                                                                                                                                                                                                                                               |                                                              |
|          |                            |                        |         |         |                  | inting:<br>ngth:                                    |               | njin DB8 Inclination: -90<br>pped Face 3 m Bearing:                                                                                                                                                                                                                                 | 0          | RL Surface<br>Datum:                                                        | e: 164.8<br>AHD                                                                               |                                                                                                                                                                                                                                                                                  | AC                                                           |
|          | Dri                        | llin                   | g lı    | nfor    | mati             | on                                                  |               | Rock Substance                                                                                                                                                                                                                                                                      |            |                                                                             |                                                                                               | Rock Mass D                                                                                                                                                                                                                                                                      | efects                                                       |
|          | Support                    | Water                  | TCR (%) | RQD (%) | RL<br>(m)        | Depth<br>(m)                                        | Graphic Log   | Material Description<br>rock type: grain characteristics, colour,<br>structure, minor components                                                                                                                                                                                    | Weathering | Strength<br>UCS=:[ <sub>(50)</sub><br>● - Axial<br>O - Diametral<br>■ - UCS | Average<br>Defect<br>Spacing<br>(mm)                                                          | thickness, type                                                                                                                                                                                                                                                                  | Description<br>inclination, planarity<br>, coating/infilling |
|          |                            | 100% Water Return      | 100     |         | 162.8 163.8      | -<br>-<br>-<br>1<br>-<br>-<br>-<br>-<br>-<br>-<br>- |               | 1.80m Continued from non-cored borehole sheet<br>SANDSTONE: fine grained, orange brown with<br>pale grey, with shale interbeds, laminated at<br>2.12m 0-10°.<br>SANDSTONE: fine grained, dark grey with pale<br>grey and orange brown, with shale interbeds,<br>laminated at 0-10°. | MW         |                                                                             |                                                                                               | P, 0°, PR, RF<br>P, 0°, PR, RF<br>P, 3°, PR, SM<br>P, 0°, clay VN, PR<br>CS<br>P, 0°, clay VN, PR                                                                                                                                                                                |                                                              |
| MMLC     |                            | 100%                   |         |         | <br>161.8        | 3                                                   |               | 3.31m<br>SANDSTONE: fine grained, pale grey with dark<br>grey and orange brown bands, bedded at 0-10°.                                                                                                                                                                              | sw         |                                                                             |                                                                                               | F, P, 0°, PR, RF<br>P, 0°, PR, RF<br>P, 0°, PR, RF<br>J, 80°, IR, RF<br>P, 0°, PR, RF<br>P, 0°, PR, RF<br>P, 0°, PR, SM<br>P, 0°, PR, SM<br>P, 0°, PR, RF<br>P, 0°, Clay VN, PR<br>CS<br>DB<br>P, 0°, PR, RF<br>P, 0°, PR, RF<br>P, 0°, PR, RF<br>P, 0°, PR, RF<br>P, 0°, PR, RF | RF                                                           |
|          |                            | 100% Water Return      | 100     |         | 1<br>159.8 160.8 | 4                                                   |               | 5.11m                                                                                                                                                                                                                                                                               | sw         |                                                                             |                                                                                               | P, 0°, PR, RF<br>P, 0°, PR, RF<br>P, 0°, PR, RF<br>P, 0°, PR, RF<br>P, 0°, Clay VN, PR<br>P, 0°, Clay VN, PR<br>P, 0°, PR, RF<br>P, 0°, PR, RF<br>P, 0°, PR, SM<br>P, 0°, PR, SM                             |                                                              |
|          |                            |                        | 100     | 06      |                  |                                                     |               | SANDSTONE: fine grained, pale grey with dark grey bands, bedded at 0-10°.                                                                                                                                                                                                           | FR         |                                                                             |                                                                                               | P, 0°, PR, RF<br>P, 0°, clay VN, PR<br>P, 0°, PR, SM<br>P, 2°, PR, SM<br>DB                                                                                                                                                                                                      | SM                                                           |
| -        | v                          | AS<br>VB<br>IQ3<br>IML | 1       | Was     | er Scr           | ewing<br>Barrel<br>Barrel<br>Barrel<br>re Barre     | ėl            | Water     Graphic Log/Core            ∠ Level (Date)<br>Inflow           Core recovere<br>indicates mate<br>Core loss             ✓ Partial Loss           Core loss             ✓ Complete Loss           Support                                                                  | d (hato    | MW -<br>MW -<br>DW -<br>HW -<br>XW -                                        | Weatherin<br>Fresh<br>Slightly We<br>Distinctly W<br>Highly Wea<br>Extremely V<br>Residual So | athered Vi<br>weathered M<br>/eathered H<br>thered Vi<br>Weathered E                                                                                                                                                                                                             |                                                              |



|      | ng<br><sub>Clie</sub> |                   | e       | rin               | -                                    | •                                     |                  | red Borehole<br>SMEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | Project No<br>Commeno                                                            |                                                                                                                                               | G11529.001                                                                                                   |                                                                     |
|------|-----------------------|-------------------|---------|-------------------|--------------------------------------|---------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| <br> | Proj<br>Hole<br>Hole  | ect<br>e Lo       | cati    | on:               |                                      | Geote<br>Wiltor                       | echnic<br>n Junc | conco<br>al Investigation: Wilton Junction School<br>stion School, Wilton<br>86353.0 m E 6212292.5 m N MGA2020-56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | Complete<br>Logged B<br>Checked                                                  | d: 30<br>y: Jk                                                                                                                                | )/5/2024<br>C                                                                                                |                                                                     |
|      |                       |                   |         |                   | l Mou<br>d Ler                       | nting:<br>ngth:                       |                  | njin DB8 Inclination: -90°<br>pped Face 3 m Bearing:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | RL Surfac                                                                        | e: 164.80<br>AHD                                                                                                                              | ) m<br>Operator:                                                                                             | AC                                                                  |
|      |                       |                   |         |                   | rmati                                | -                                     |                  | Rock Substance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                                                                  |                                                                                                                                               | Rock Mass I                                                                                                  |                                                                     |
|      | Support               | Water             | TCR (%) | RQD (%)           | RL<br>(m)                            | Depth<br>(m)                          | Graphic Log      | Material Description<br>rock type: grain characteristics, colour,<br>structure, minor components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Weathering | Strength<br>UCS=-\L_(60)<br>● - Axial<br>O - Diametral<br>■ - UCS<br>弓 _ = 도 듯 표 | Average<br>Defect<br>Spacing<br>(mm)                                                                                                          | thickness, type                                                                                              | t Description<br>e, inclination, planarity,<br>s, coating/infilling |
|      |                       |                   |         |                   | Ø.                                   | -                                     |                  | SANDSTONE: fine grained, pale grey with dark<br>grey bands, bedded at 0-10° <i>(continued)</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FR         |                                                                                  |                                                                                                                                               |                                                                                                              |                                                                     |
|      |                       | 100% Water Return | 100     | 06                | 157.                                 | 7                                     |                  | SANDSTONE: fine to coarse grained, pale grey<br>and brown with dark grey bands, bedded at 0-10°.<br>7.43m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sw         |                                                                                  |                                                                                                                                               |                                                                                                              |                                                                     |
|      |                       | 100% M            |         |                   | 80                                   | -                                     |                  | SANDSTONE: fine grained, pale grey with dark<br>grey and orange brown bands, bedded at 0-10°.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FR         |                                                                                  |                                                                                                                                               | – P, 0°, PR, RF<br>– P, 0°, PR, SM<br>– P, 0°, PR, SM<br>– P, 0°, PR, RF<br>∽ P, 0°, clay VN, PF             | 2 SM                                                                |
|      |                       |                   |         |                   | <br>156.8                            | 8                                     |                  | SANDSTONE: fine to coarse grained, pale grey<br>with orange brown, red brown and dark grey<br>bands, bedded at 5-15°.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                  |                                                                                                                                               | - P, 0°, PR, RF<br>- P, 0°, PR, SM<br>- P, 2°, PR, RF<br>P, 0°, PR, SM<br>- P, 0°, PR, SM<br>- P, 2°, PR, SM | ,                                                                   |
|      |                       |                   |         |                   | 155.8                                | 9—                                    | · · · · ·        | Hole Terminated at 8.80 m<br>Target depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                                                                                  |                                                                                                                                               | <u>P, 5°, PR, SM</u>                                                                                         |                                                                     |
|      |                       |                   |         |                   | <br>154.8                            | -<br>-<br>10<br>-                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                                                                                  |                                                                                                                                               |                                                                                                              |                                                                     |
|      |                       |                   |         |                   | <br>153.8                            | -<br>-<br>11<br>-                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                                                                                  |                                                                                                                                               |                                                                                                              |                                                                     |
|      |                       | NQ3               | -       | Was<br>HQ3<br>NQ3 | er Scr<br>shbore<br>3 Core<br>3 Core | ewing<br>Barrel<br>Barrel<br>re Barre | el               | Water     Graphic Log/Core            ∠ Level (Date)<br>□nflow         ∠ Partial Loss         ∠ Core loss         ∠ Core loss         ∠ Core loss         ∠ Level (Date)         ∠ Level (Date) | I (hato    | MW<br>MW<br>DW<br>HW<br>XW                                                       | Weathering         Fresh         Slightly Weathering         Distinctly We         Highly Weathering         Extremely W         Residual Soi | hered L<br>Veathered M<br>athered H<br>nered V<br>eathered E                                                 | 1 - Medium                                                          |





BH14

| C<br>Pi<br>H   | lient:<br>roject l<br>ole Loo<br>ole Po | Nam                                                | ie:<br>on:                           | Wilton J                 | C/-<br>nnic<br>unc | SME<br>al Inv                             | C<br>restiga<br>School              | I, Wilte               | on                                                     | Junction School                                                                             | Commenced:<br>Completed:<br>Logged By:<br>Checked By:       |                                                               | 5/202<br>5/202           |                  |                                                                                                                            |
|----------------|-----------------------------------------|----------------------------------------------------|--------------------------------------|--------------------------|--------------------|-------------------------------------------|-------------------------------------|------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|--------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------|
|                | rill Moo<br>ole Dia                     |                                                    |                                      | -                        |                    | njin D<br>5 mm                            | B8                                  |                        |                                                        | Inclination: -90°<br>Bearing:                                                               |                                                             | 166.20<br>AHD                                                 |                          | Onera            | ator: AC                                                                                                                   |
|                |                                         |                                                    |                                      | g Informati              |                    | , , , , , , , , , , , , , , , , , , , ,   |                                     |                        |                                                        | Soil Descr                                                                                  |                                                             |                                                               |                          |                  | Observations                                                                                                               |
| Method         | Support<br>Penetration                  |                                                    | Levels                               | Samples &<br>Field Tests | Recovery           | RL<br>(m)                                 | Depth<br>(m)                        | Graphic Log            | Group<br>Symbol                                        | Material De<br>Fraction, Colour, Str<br>Plasticity, Sensitiv                                | scription<br>ructure, Bedding,                              | Moisture                                                      | Condition<br>Consistency | Relative Density | Structure and<br>Additional Observations                                                                                   |
|                |                                         |                                                    |                                      |                          |                    |                                           |                                     | ×                      | CI                                                     | TOPSOIL Silty CLAY: medi                                                                    | ium plasticity, dark brow                                   |                                                               | -                        | TO               | PSOIL                                                                                                                      |
|                |                                         |                                                    | SF                                   | 50m<br>PT<br>7,15<br>-22 |                    |                                           | -                                   |                        | CI<br>/CH                                              | Silty CLAY: medium to high<br>pale grey.                                                    | n plasticity, orange brown                                  | n with<br>N                                                   | 1 F 1<br>S<br>1 S        | to<br>t          | SIDUAL SOIL                                                                                                                |
|                |                                         |                                                    |                                      | -22<br>95m               |                    | <br>165.2                                 | -<br>1                              | x                      | CI                                                     | <sup>0.80m</sup><br>Silty CLAY: medium plastic<br>brown, trace of fine grained              |                                                             |                                                               |                          | _                |                                                                                                                            |
|                |                                         |                                                    |                                      |                          |                    |                                           | -                                   | ×                      |                                                        | 1.20m<br>SANDSTONE: fine to medi<br>with pale grey, with frequer<br>low strength (Class 5). |                                                             |                                                               | )                        | RO               | СК                                                                                                                         |
|                |                                         |                                                    |                                      |                          |                    | 1<br>164.2                                | -                                   |                        |                                                        | 1.75m<br>Continued on cored boreho                                                          | le sheet                                                    |                                                               |                          |                  |                                                                                                                            |
|                |                                         |                                                    |                                      |                          |                    | <br>163.2                                 | -<br>-<br>3-<br>-                   |                        |                                                        |                                                                                             |                                                             |                                                               |                          |                  |                                                                                                                            |
|                |                                         |                                                    |                                      |                          |                    | ا<br>162.2                                | 4                                   |                        |                                                        |                                                                                             |                                                             |                                                               |                          |                  |                                                                                                                            |
|                |                                         |                                                    |                                      |                          |                    | <br>161.2                                 | -<br>5-<br>-                        |                        |                                                        |                                                                                             |                                                             |                                                               |                          |                  |                                                                                                                            |
| A[<br>A[<br>Rf | <br>                                    | thod<br>Jer So<br>Jer V<br>Jer Tu<br>bide<br>ck Ro | crewi<br>Bit<br>ungst<br>Bit<br>Iler | ľ /m r                   | o re<br>ang        | t <u>ion</u><br>sistano<br>ing to<br>usal | [                                   | ⊻ Le<br>> Infi<br>⊲ Pa | <u>Vater</u><br>vel (Dat<br>low<br>rtial Los<br>mplete | SPT - Standard Penet<br>s PP - Pocket Penetro                                               | mple D -<br>ble M -<br>ration Test W -<br>meter w -<br>PL - | ture Co<br>Dry<br>Moist<br>Wet<br>Moistu<br>Plastic<br>Liquid | re Cor<br>Limit          | _                | <u>Consistency/Relative Dens</u><br>VS - Very Soft<br>S - Soft<br>F - Firm<br>VSt - Very Stiff<br>H - Hard<br>Fr - Friable |
|                |                                         | port                                               | !                                    |                          | <u>Gr</u>          | Core                                      | Log/Co<br>recove<br>ates ma<br>loss | red (ha                |                                                        | <u>Classification S</u><br><u>and Soil Descri</u><br>Based on Unifie<br>Classification S    | <u>ymbols</u><br>iptions<br>ed Soil                         |                                                               |                          |                  | VL - Very Loose<br>L - Loose<br>MD - Medium Dense<br>D - Dense<br>VD - Very Dense                                          |



| 'na                          | ind                                              |                      | rin               | al                                   | 00                                              | <b>.</b> C o              | red Borehole                                                                                                                                                           |            | Project No                                                                  |                                                                                                                                    | G11529.001                                                                                                                                                                         | Page 2 of 3                                                                                |
|------------------------------|--------------------------------------------------|----------------------|-------------------|--------------------------------------|-------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Clie<br>Proj<br>Hole<br>Hole | nt:<br>ject<br>e Lo                              | Nai                  | me:<br>ion:       |                                      | SINS<br>Geote<br>Wiltor                         | W C/-<br>echnic<br>n Junc | SMEC<br>al Investigation: Wilton Junction School<br>tion School, Wilton<br>86357.5 m E 6212264.4 m N MGA2020-56                                                        |            | Commence<br>Complete<br>Logged By<br>Checked I                              | ced: 2<br>d: 2<br>y: J                                                                                                             | 8/5/2024<br>8/5/2024<br>K<br>IG                                                                                                                                                    |                                                                                            |
|                              |                                                  |                      |                   | l Mou<br>d Ler                       | inting:<br>ngth:                                |                           | njin DB8 Inclination: -90°<br>pped Face 3 m Bearing:                                                                                                                   |            | RL Surfac<br>Datum:                                                         | e: 166.2<br>AHD                                                                                                                    | 20 m<br>Operator:                                                                                                                                                                  | AC                                                                                         |
| Dı                           | rillin                                           | ng I                 | nfoi              | rmati                                | ion                                             |                           | Rock Substance                                                                                                                                                         |            |                                                                             |                                                                                                                                    | Rock Mass D                                                                                                                                                                        | )efects                                                                                    |
| Support                      | Support<br>Water<br>TCR (%)<br>RQD (%)<br>(3) 73 |                      |                   |                                      | Depth<br>(m)                                    | Graphic Log               | Material Description<br>rock type: grain characteristics, colour,<br>structure, minor components                                                                       | Weathering | Strength<br>UCS=-L <sub>(50)</sub><br>● - Axial<br>O - Diametral<br>■ - UCS | Average<br>Defect<br>Spacing<br>(mm)                                                                                               | thickness, type                                                                                                                                                                    | : Description<br>, inclination, planarity,<br>, coating/infilling                          |
|                              |                                                  |                      |                   | 165.2                                | -<br>-<br>-<br>1-<br>-                          |                           |                                                                                                                                                                        |            |                                                                             |                                                                                                                                    |                                                                                                                                                                                    |                                                                                            |
|                              | 100% Water Return                                | 100                  | 0                 | <br>164.2                            | 2                                               |                           | 1.75m Continued from non-cored borehole sheet<br>SANDSTONE: fine to medium grained, pale grey<br>with orange brown, with frequent clay seams.                          |            |                                                                             |                                                                                                                                    | - P, 0°, clay, IR, RF<br>- P, 0°, PR, RF<br>- J, 0 - 90°, clay, IR,<br>- J, 0 - 90°, IR, RF, 1<br>- J, 45°, clay VN, IR                                                            | ight-open<br>, RF                                                                          |
|                              | E                                                |                      |                   | <br>163.2                            | 3                                               |                           |                                                                                                                                                                        | MW         |                                                                             |                                                                                                                                    | - J, 85°, clay, IR, RF<br>- J, 80°, clay, IR, RF<br>- P, 2°, clay, PR, RF<br>- P, 0°, PR, RF<br>- P, 0°, PR, RF<br>- J, 85°, clay, PR, R<br>- Clay, SM<br>- Clay, SM<br>- Clay, SM | , infill                                                                                   |
|                              | 100% Water Return                                | 100                  | 48                | <br>162.2                            | 4                                               |                           | 3.80m<br>SANDSTONE: fine to medium grained, orange<br>brown with pale grey, bedded at 0-10°.                                                                           | sw         |                                                                             |                                                                                                                                    | - clay, SM<br>- clay, SM<br>~ clay, SM<br>~ P, 0°, PR, RF<br>- P, 0°, PR, RF<br>~ P, 0°, PR, SM<br>- P, 0°, PR, SM<br>- P, 0°, PR, SM<br>- P, 0°, PR, SM                           |                                                                                            |
|                              |                                                  |                      |                   | <br>161.2                            | 5—<br>5—                                        |                           | 5.30m<br>SANDSTONE: fine to medium grained, pale grey<br>with orange brown, bedded at 0-10°.                                                                           |            |                                                                             |                                                                                                                                    | ~ P, 0°, PR, SM<br>- P, 0°, PR, SM<br>⊃ clay, SM<br>- P, 0°, PR, RF<br>↓ J, 90°, IR, RF<br>↓ DB                                                                                    |                                                                                            |
|                              |                                                  | 100                  | 85                |                                      | -                                               |                           |                                                                                                                                                                        | sw         |                                                                             |                                                                                                                                    | <sup>1</sup> DB<br>— P, 0°, IR, RF                                                                                                                                                 |                                                                                            |
|                              | NQ3                                              | -<br>-<br>3 -<br>3 - | Was<br>HQ3<br>NQ3 | er Scr<br>shbore<br>3 Core<br>3 Core | rewing<br>Barrel<br>Barrel<br>Barrel<br>re Barr | el                        | Water     Graphic Log/Core            ∠ Level (Date)<br>□nflow         ∠ Partial Loss         ∠ Complete Loss<br>Support<br>T - Timbering           ⊆ Graphic Log/Core | l (hato    | SW -<br>MW -<br>DW -<br>HW -<br>XW -                                        | <u>Weathering</u><br>- Fresh<br>- Slightly Wea<br>- Moderately<br>- Distinctly W<br>- Highly Wea<br>- Extremely V<br>- Residual Sc | - Vi<br>athered L<br>Weathered M<br>eathered H<br>thered V<br>Veathered El                                                                                                         | <u>Strength</u><br>- Very Low<br>- Medium<br>- High<br>H - Very High<br>H - Extremely High |



| (<br> <br> | Clie<br>Proj<br>Hole |                                                                                                                                                         | Nar        | me:<br>ion:       |                                      | Geote<br>Wiltor                       | echnic<br>n Junc                                                                                 | SMEC<br>al Investigation: Wilton Junction School<br>tion School, Wilton<br>36357.5 m E 6212264.4 m N MGA2020-56 | t m N MGA2020-56<br>Inclination: -90° |                                                                                           |                                      | ed: 2<br>Sy: J                                                                                                                                     | 8/5/2024<br>8/5/2024<br>K<br>IG                                                                                        |      |
|------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------|--------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------|
|            |                      |                                                                                                                                                         |            |                   | l Mou<br>d Ler                       | nting:                                |                                                                                                  | njin DB8 Inclination: -90<br>pped Face 3 m Bearing:                                                             |                                       |                                                                                           |                                      | ce: 166.2<br>AHD                                                                                                                                   | 0 m<br>Operator:                                                                                                       | AC   |
|            |                      |                                                                                                                                                         |            |                   | rmati                                |                                       |                                                                                                  | Rock Substance                                                                                                  |                                       | Datum:                                                                                    |                                      | Rock Mass I                                                                                                                                        |                                                                                                                        |      |
| Method     | Support              | Support<br>Water<br>TCR (%)<br>RQD (%)<br>()<br>M<br>A<br>M<br>()<br>M<br>M<br>M<br>()<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M |            |                   | Depth<br>(m)                         | Graphic Log                           | Material Description<br>rock type: grain characteristics, colour,<br>structure, minor components | Weathering                                                                                                      | ו<br>0                                | Strength<br>UCS=·l <sub>t(50)</sub><br>● - Axial<br>) - Diametral<br>■ - UCS<br>□ ੲ ⊥ ≯ 螆 | Average<br>Defect<br>Spacing<br>(mm) | Defect Description<br>thickness, type, inclination, planarity<br>roughness, coating/infilling                                                      |                                                                                                                        |      |
| NMLC       |                      | 100% Water Return                                                                                                                                       | 100        | 85                | 159.2                                | -<br>-<br>-<br>7<br>-<br>-            |                                                                                                  | SANDSTONE: fine to medium grained, pale grey<br>with orange brown, bedded at 0-10° <i>(continued)</i>           | sw                                    |                                                                                           |                                      |                                                                                                                                                    | - P, 0°, PR, RF<br>- P, 3°, PR, SM<br>- P, 3°, PR, SM<br>- P, 0°, PR, SM<br>- P, 2°, PR, SM<br>- P, 0°, PR, SM<br>- HB |      |
|            |                      |                                                                                                                                                         |            |                   | <br>158.2                            | 8                                     |                                                                                                  | 7.75m<br>SANDSTONE: fine to coarse grained, mottled<br>pale grey with dark grey, bedded at 5-15°. 8.45m         | FR                                    |                                                                                           |                                      |                                                                                                                                                    | — P, 0°, clay VN, PF                                                                                                   | , RF |
|            |                      |                                                                                                                                                         |            |                   | 157.2                                | 9                                     |                                                                                                  | Hole Terminated at 8.45 m<br>Target depth                                                                       |                                       |                                                                                           |                                      |                                                                                                                                                    |                                                                                                                        |      |
|            |                      |                                                                                                                                                         |            |                   | <br>156.2                            | -<br>-<br>10<br>-                     |                                                                                                  |                                                                                                                 |                                       |                                                                                           |                                      |                                                                                                                                                    |                                                                                                                        |      |
|            |                      |                                                                                                                                                         |            |                   | <br>155.2                            | -<br>-<br>11<br>-<br>-                |                                                                                                  |                                                                                                                 |                                       |                                                                                           |                                      |                                                                                                                                                    |                                                                                                                        |      |
|            |                      | AS<br>WB<br>HQ3<br>NQ3<br>NML                                                                                                                           | -<br>-<br> | Was<br>HQ3<br>NQ3 | er Scr<br>shbore<br>3 Core<br>3 Core | ewing<br>Barrel<br>Barrel<br>re Barre | el                                                                                               | Water     Graphic Log/Core                                                                                      | d (hato                               |                                                                                           | SW<br>MW<br>DW<br>HW<br>XW           | Weatherin         - Fresh         - Slightly Weatherine         - Distinctly W         - Distinctly W         - Extremely V         - Residual Sci | - V<br>athered L<br>Weathered M<br>eathered H<br>hered V<br>Veathered E                                                |      |

| 8414  | GG11529 Wilton<br>28/5/24                |                                              | Start                                                         | 1.75m              |           |  |
|-------|------------------------------------------|----------------------------------------------|---------------------------------------------------------------|--------------------|-----------|--|
| 2     |                                          |                                              | CON AP                                                        |                    |           |  |
| 3     |                                          |                                              |                                                               |                    |           |  |
| 4     |                                          |                                              |                                                               |                    |           |  |
| 5     | TRANK MINT                               |                                              |                                                               |                    |           |  |
| 6 (   |                                          |                                              |                                                               |                    |           |  |
| 7     |                                          |                                              |                                                               |                    |           |  |
| 8     |                                          |                                              | End                                                           | M.S.S.             |           |  |
| 11.11 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |                                              |                                                               |                    |           |  |
|       |                                          |                                              |                                                               |                    |           |  |
|       |                                          |                                              |                                                               |                    |           |  |
|       |                                          |                                              |                                                               |                    |           |  |
|       |                                          |                                              |                                                               |                    |           |  |
|       |                                          | oject No: GG11529.001<br>ent: SINSW C/- SMEC | Geotechnical Investiga<br>New Primary School at V<br>Junction | ition Bo<br>Wilton | <: 1 of 1 |  |



| F<br>F   | lole       | nt:<br>ect Na<br>Loca                                         | tion:                           | Wilton .                                      | hnic<br>Junc  | al Inv                             | vestiga<br>Schoo            | I, Wilte               | on                                              | Junction School<br>) m N MGA2020-56                                                      | Commenced:<br>Completed:<br>Logged By:<br>Checked By:       | 28/5/<br>28/5/<br>JK<br>MG |                                 |                                                                                                               |
|----------|------------|---------------------------------------------------------------|---------------------------------|-----------------------------------------------|---------------|------------------------------------|-----------------------------|------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------|
| C        | Drill      | Mode                                                          | l and                           | Mounting:                                     | Ha            | njin D                             |                             |                        | 2233.0                                          | Inclination: -90°                                                                        | RL Surface: 16                                              | 67.00 m                    |                                 |                                                                                                               |
| +        | lole       | Diam                                                          |                                 | ing Informat                                  |               | 5 mm                               |                             |                        |                                                 | Bearing:<br>Soil Descr                                                                   |                                                             | HD                         | O                               | perator: AC<br>Observations                                                                                   |
| DOL      | bort       | Penetration                                                   | Groundwater<br>Levels           | Samples &<br>Field Tests                      | Recovery      |                                    |                             | Graphic Log            | dr                                              | Material Des<br>Fraction, Colour, Str<br>Plasticity, Sensiti                             | scription<br>ructure, Bedding,                              | Moisture<br>Condition      | Consistency<br>Relative Density |                                                                                                               |
| INIELIOU | Support    | <u> </u>                                                      | Gro                             |                                               | Reo           | RL<br>(m)                          | Depth<br>(m)                | Gra                    | D<br>Group<br>Symbol                            | TOPSOIL Silty CLAY: medi                                                                 |                                                             |                            | Con<br>Rela                     | TOPSOIL                                                                                                       |
|          |            |                                                               |                                 | 0.50m                                         |               |                                    | -                           |                        | CI<br>/CH                                       | 0.30m<br>Silty CLAY: medium to high<br>0.50m pale grey.                                  | n plasticity, orange brown                                  | M<br>with M                | F to<br>St                      | RESIDUAL SOIL                                                                                                 |
| וחא      |            |                                                               |                                 | SPT<br>4,5,6<br>N=11<br>S10 at 0.60m<br>0.95m |               | 0                                  | -                           | × ×                    | CI<br>/CH                                       | Silty CLAY: medium to high<br>orange brown, trace of iron<br>(completely weathered san   | stone/ sandstone gravel;                                    | м                          | St                              |                                                                                                               |
| ×        |            |                                                               |                                 | 0.0011                                        |               | 166.0                              | 1                           | ×                      |                                                 | 1.20m<br>SANDSTONE: fine grained                                                         | orange brown with pale                                      | M / C                      | VSt                             | ROCK                                                                                                          |
|          |            |                                                               |                                 |                                               |               |                                    | -                           |                        |                                                 | grey and red brown, with cl<br>strength (Class 5).                                       | ay seams. Estimate very                                     | ow<br>D                    |                                 |                                                                                                               |
|          |            | <u>////</u><br>     <br>                                      |                                 |                                               |               | 1<br>165.0                         | 2-                          |                        |                                                 | 1.73m<br>Continued on cored boreho                                                       | le sheet                                                    |                            |                                 |                                                                                                               |
|          |            |                                                               |                                 |                                               |               | 9                                  | -                           |                        |                                                 |                                                                                          |                                                             |                            |                                 |                                                                                                               |
|          |            |                                                               |                                 |                                               |               | <br>164.0                          | 3-                          |                        |                                                 |                                                                                          |                                                             |                            |                                 |                                                                                                               |
|          |            |                                                               |                                 |                                               |               | <br>163.0                          | -<br>-<br>4                 |                        |                                                 |                                                                                          |                                                             |                            |                                 |                                                                                                               |
|          |            |                                                               |                                 |                                               |               | <br>162.0                          | 5-                          |                        |                                                 |                                                                                          |                                                             |                            |                                 |                                                                                                               |
| A<br>A   | \D¥<br>\D∓ | IIIII<br>IIIII<br>IIIII<br>Auger<br>Auger<br>Carbic<br>Rock I | Scre<br>V Bit<br>Tung<br>le Bit | jsten                                         | lo re<br>rang | tion<br>sistand<br>ing to<br>fusal | [                           | ⊻ Le<br>> Infi<br>⊲ Pa | Vater<br>vel (Dat<br>low<br>rtial Los<br>mplete | SPT - Standard Penet<br>s PP - Pocket Penetro                                            | mple D - I<br>ble M - I<br>ration Test W - V<br>meter w - I | Voist                      | Conte                           | <u>Consistency/Relative Den</u><br>VS - Very Soft<br>S - Soft<br>F - Firm<br>ent VSt - Very Stiff<br>H - Hard |
| V        |            | Washt<br><u>Suppo</u><br>- Ca                                 | ort                             |                                               | <u>Gr</u>     | Core                               | Log/Co<br>recove<br>ates ma | ore Lo<br>red (ha      | <u>ss</u><br>atching                            | <u>Classification S</u><br><u>and Soil Descri</u><br>Based on Unifie<br>Classification S | <u>ymbols</u><br>ip <i>tions</i><br>ed Soil                 | ₋iquid Li                  | mit                             | Fr - Friable<br>VL - Very Loose<br>L - Loose<br>MD - Medium Dense<br>D - Dense<br>VD - Very Dense             |



| P<br>H | Clier<br>Proje<br>Iole<br>Iole | ect I<br>Lo                                     | cati | on:                              |                 | Geote<br>Wiltor                             | echnic<br>n June                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SMEC<br>cal Investigation: Wilton Junction School<br>ction School, Wilton<br>86353.2 m E 6212235.0 m N MGA2020-56                |       | Commenc<br>Completed<br>Logged By<br>Checked B                               | 1: :<br>/: .                                                                                             | 28/5/2024<br>28/5/2024<br>JK<br>MG                                                                                                                                                                                    |                                                                                            |
|--------|--------------------------------|-------------------------------------------------|------|----------------------------------|-----------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|        |                                |                                                 |      |                                  |                 | unting:<br>ngth:                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | njin DB8 Inclination: -90°<br>ppped Face 3 m Bearing:                                                                            |       | RL Surfac<br>Datum:                                                          | e: 167.<br>AHD                                                                                           | 00 m<br>Operator:                                                                                                                                                                                                     | AC                                                                                         |
|        | Dri                            | illin                                           | g lı | nfoi                             | rmati           | ion                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rock Substance                                                                                                                   |       |                                                                              |                                                                                                          | Rock Mass L                                                                                                                                                                                                           | efects                                                                                     |
|        | Support                        | Support<br>Water<br>TCR (%)<br>RQD (%)<br>a) JJ |      |                                  | RL<br>(m)       | Depth<br>(m)                                | Graphic Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Material Description<br>rock type: grain characteristics, colour,<br>structure, minor components                                 |       | Strength<br>UCS=:L <sub>t(50)</sub><br>● - Axial<br>O - Diametral<br>■ - UCS | Average<br>Defect<br>Spacing<br>(mm)                                                                     | Defect Description<br>thickness, type, inclination, pla<br>roughness, coating/infillin                                                                                                                                |                                                                                            |
|        |                                |                                                 |      |                                  | <br>166.0       | -<br>-<br>1-<br>-                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                  |       |                                                                              |                                                                                                          |                                                                                                                                                                                                                       |                                                                                            |
|        |                                | 100% Water Return                               | 100  | 80                               | 165.0           | 2                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SANDSTONE: fine to coarse grained, mottled pale grey with dark grey, bedded at 5-15°.                                            | MW    |                                                                              |                                                                                                          | — P, 2°, clay VN, PR                                                                                                                                                                                                  |                                                                                            |
|        | -                              | 100% Water Return                               | 100  | 80                               | <br>163.0 164.0 | 3                                           | •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         • | 3.50m<br>SANDSTONE: fine grained, pale grey with dark<br>grey and orange brown, bedded at 0-5°.<br>4.08-4.47m: Shale Interbed    | sw    |                                                                              |                                                                                                          | DB<br>P, 0°, PR, RF<br>P, 0°, PR, RF<br>P, 2°, PR, SM<br>P, 2°, PR, SM<br>Clay, SM<br>P, 0°, PR, RF<br>P, 0°, PR, RF<br>HB<br>P, 0°, PR, SM<br>HB<br>P, 0°, PR, SM<br>P, 0°, PR, SM<br>P, 0°, PR, SM<br>P, 0°, PR, SM |                                                                                            |
|        |                                | 100% \                                          |      |                                  | <br>162.0       | -<br>-<br>5<br>-<br>-                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.47m<br>SANDSTONE: fine grained, pale grey with orange<br>brown, with occasional dark grey shale interbeds,<br>bedded at 0-10°. | SW    |                                                                              |                                                                                                          | <ul> <li>P, 0°, PR, SM</li> <li>HB</li> <li>P, 0°, PR, SM</li> <li>HB</li> <li>DB</li> </ul>                                                                                                                          |                                                                                            |
| L      | ١.                             | AS<br>VB<br>HQ3<br>NQ3<br>NML                   | 1    | etho<br>Aug<br>Was<br>HQ3<br>NMI | er Sci          | rewing<br>e Barrel<br>e Barrel<br>re Barrel | el                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Water     Graphic Log/Core L                                                                                                     | (hato | +                                                                            | Weatherin<br>Fresh<br>Slightly We<br>Moderately<br>Distinctly W<br>Highly Wea<br>Extremely<br>Residual S | P, 0°, PR, RF<br>29<br>Veathered L<br>Veathered M<br>Veathered M<br>Veathered V                                                                                                                                       | Strength<br>- Very Low<br>- Low<br>- Medium<br>- High<br>H - Very High<br>- Extremely High |



| l      | Hole    | nt:<br>ect<br>e Lo<br>e Po                                  | cati       | ion:              |                                      | Geote<br>Wiltor                       | echnic<br>n Junc                                                                                 | SMEC<br>al Investigation: Wilton Junction School<br>stion School, Wilton<br>86353.2 m E 6212235.0 m N MGA2020-56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | C<br>L                                                        | Commen<br>Complete<br>ogged B<br>Checked | ed: 2<br>By: J                                                                                                                    | 28/5/2024<br>28/5/2024<br>JK<br>MG                                        |                                                                                                                                                        |  |
|--------|---------|-------------------------------------------------------------|------------|-------------------|--------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|        |         |                                                             |            |                   | l Mou<br>d Ler                       | nting:<br>igth:                       |                                                                                                  | njin DB8 Inclination: -90<br>pped Face 3 m Bearing:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0      |                                                               | RL Surfac<br>)atum:                      | ce: 167.0<br>AHD                                                                                                                  | 00 m<br>Operator:                                                         | AC                                                                                                                                                     |  |
|        | Dr      | illin                                                       | ng li      | nfor              | rmati                                | on                                    |                                                                                                  | Rock Substance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                                                               |                                          |                                                                                                                                   | Rock Mass I                                                               | Defects                                                                                                                                                |  |
| Method | Support | Support<br>Water<br>TCR (%)<br>BI<br>M<br>(m)<br>(m)<br>(m) |            |                   | Depth<br>(m)                         | Graphic Log                           | Material Description<br>rock type: grain characteristics, colour,<br>structure, minor components | Weathering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | ICS=-L <sub>(50)</sub><br>● - Axial<br>- Diametral<br>■ - UCS | Average<br>Defect<br>Spacing<br>(mm)     | thickness, type                                                                                                                   | et Description<br>e, inclination, planarity,<br>s, coating/infilling      |                                                                                                                                                        |  |
| NMLC   |         | 100% Water Return                                           | 100        | 100               | 159.0 160.0                          |                                       |                                                                                                  | SANDSTONE: fine grained, pale grey with orang<br>brown, with occasional dark grey shale interbeds<br>bedded at 0-10°. <i>(continued)</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •      |                                                               |                                          |                                                                                                                                   | – P, 0°, PR, RF<br>– P, 0°, PR, SM                                        |                                                                                                                                                        |  |
|        |         |                                                             |            |                   | 158.0                                | 9                                     |                                                                                                  | 8.55m<br>Hole Terminated at 8.55 m<br>Target depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                                                               |                                          |                                                                                                                                   | 1, 2, 11, UM                                                              |                                                                                                                                                        |  |
|        |         |                                                             |            |                   | 1<br>157.0                           | 10                                    |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                                                               |                                          |                                                                                                                                   |                                                                           |                                                                                                                                                        |  |
|        |         |                                                             |            |                   | 1<br>156.0                           | -<br>-<br>-<br>-<br>-<br>-            |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                                                               |                                          |                                                                                                                                   |                                                                           |                                                                                                                                                        |  |
|        |         | NQ3                                                         | -<br>-<br> | Was<br>HQ3<br>NQ3 | er Scr<br>shbore<br>3 Core<br>3 Core | ewing<br>Barrel<br>Barrel<br>re Barre | el                                                                                               | Water     Graphic Log/Core            ∠ Level (Date)         □ Inflow         ∠ Partial Loss         ∠ Core loss | d (hat |                                                               | ' SW<br>MW<br>DW<br>HW<br>XW             | Weatherin     Fresh     Slightly Weatheriny     Moderately     Distinctly W     Highly Weathering     Extremely V     Residual Sc | - V<br>athered L<br>Weathered M<br>/eathered H<br>thered V<br>Veathered E | Strength       /L     - Very Low       - Low       M     - Medium       - High       H     - High       H     - Kery High       H     - Extremely High |  |

| BHIS | GG11529<br>28/5/24 Willion |                 |               | stort E                                       |                                                                                                                |        |
|------|----------------------------|-----------------|---------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------|
| 2    |                            |                 |               |                                               | The property                                                                                                   |        |
| 3    |                            |                 |               |                                               |                                                                                                                |        |
| 4    |                            |                 |               |                                               |                                                                                                                |        |
| 5    |                            |                 |               |                                               | READ THE                                                                                                       | N.S.M. |
| 6    |                            |                 |               |                                               |                                                                                                                |        |
| 7    | THAT BEARING               |                 |               |                                               |                                                                                                                |        |
| 8    |                            | 1. 1            | 8.55m         | End                                           | A CONTRACTOR OF THE OWNER OF THE |        |
|      |                            |                 |               |                                               | 9                                                                                                              |        |
|      |                            |                 |               |                                               |                                                                                                                |        |
|      |                            |                 |               |                                               |                                                                                                                |        |
|      |                            |                 |               |                                               |                                                                                                                |        |
| C    |                            | No: GG11529.001 | Geot<br>New P | echnical Investigation<br>rimary School at Wi | on Box : 1 of 1                                                                                                |        |
|      | Clionty 1                  | SINSW C/- SMEC  |               | Junction                                      |                                                                                                                |        |

#### Green Geotechnics Pty Ltd PO Box 3244, Rouse Hill NSW 2155 Phone: 0477 779 684 | Email: matt@greengeo.com.au



### POINT LOAD STRENGTH INDEX

Project No: GG11529 Project Address: Wilton Junction Public School, Wilton Client: SINSW C/- SMEC Test Method: AS 4133.4.1 Test Date: 28/05/2024 Tested By: MG

|                 |             |              |           |                   |          | 1               |            |              | Page:     | 1011                         |          |
|-----------------|-------------|--------------|-----------|-------------------|----------|-----------------|------------|--------------|-----------|------------------------------|----------|
| Borehole No: I  | BH8         |              |           |                   |          | Borehole No:    | BH9        |              |           |                              |          |
| Date Drilled: 2 | 7/5/2024    |              |           |                   |          | Date Drilled: 2 | 7/5/2024   |              |           |                              |          |
| Depth           | Test Type   | ls(50) (Mpa) | Rock Type | Rock<br>Structure | Moisture | Depth           | Test Type  | ls(50) (Mpa) | Rock Type | Rock Structure               | Moisture |
| 2.61            | D           | 0.21         | SH        | LA                | м        | 4.27            | D          | 0.13         | SH        | LA                           | D        |
|                 | А           | 0.32         | SH        | LA                | М        |                 | А          | 0.42         | SH        | LA                           | D        |
|                 |             |              |           |                   |          |                 |            |              |           |                              |          |
| 3.32            | D           | 0.17         | SH        | LA                | М        | 5.16            | D          | 0.92         | SS        | BE                           | D        |
|                 | A           | 0.28         | SH        | LA                | М        |                 | A          | 1.01         | SS        | BE                           | D        |
| 4.21            | D           | 0.28         | SS        | BE                | D        | 6.42            | D          | 0.87         | SS        | BE                           | D        |
|                 | A           | 0.39         | SS        | BE                | D        |                 | A          | 0.96         | SS        | BE                           | D        |
|                 |             |              |           |                   |          |                 |            |              |           |                              |          |
| 5.81            | D           | 1.07         | SS        | BE                | D        | 7.56            | D          | 1.21         | SS        | BE                           | D        |
|                 | A           | 1.25         | SS        | BE                | D        |                 | A          | 1.36         | SS        | BE                           | D        |
| 6.42            | D           | 1.25         | SS        | BE                | D        | 8.27            | D          | 1.25         | SS        | BE                           | D        |
|                 | A           | 1.37         | SS        | BE                | D        |                 | A          | 1.41         | SS        | BE                           | D        |
|                 |             |              |           |                   |          |                 |            |              |           |                              |          |
| 7.17            | D           | 1.54         | SS        | BE                | D        |                 |            |              |           |                              |          |
|                 | А           | 1.86         | SS        | BE                | D        |                 |            |              |           |                              |          |
| 8.43            | D           | 0.89         | SS        | BE                | D        |                 |            |              |           |                              |          |
|                 | А           | 0.98         | SS        | BE                | D        |                 |            |              |           |                              |          |
|                 | STRUCTURE   |              |           | TEST TYPE         |          |                 | MOISTURE C | ONDITION     |           | ROCK TYPE                    |          |
|                 | MA= MASSIV  | Έ            |           | A= AXIAL          |          |                 | W= WET     |              |           | SS= SANDSTONE                |          |
|                 | BE= BEDDED  |              |           | D= DIAMETR        | AL       |                 | M= MOIST   |              |           | ST= SILTSTONE                |          |
|                 | LA= LAMINA  | TED          |           | I= IRREGULA       | R        |                 | D= DRY     |              |           | SH= SHALE                    |          |
|                 | CR= CRYSTAL | LINE         |           | C= CUBE           |          |                 |            |              |           | YS= CLAYSTONE<br>IG= IGNEOUS |          |

#### Green Geotechnics Pty Ltd PO Box 3244, Rouse Hill NSW 2155 Phone: 0477 779 684 | Email: matt@greengeo.com.au

GREEN GREEN

### POINT LOAD STRENGTH INDEX

Project No: GG11529 Project Address: Wilton Junction Public School, Wilton Client: SINSW C/- SMEC Test Method: AS 4133.4.1 Test Date: 30/05/2024 Tested By: MG

Page: 2 of 4 Borehole No: BH11 Borehole No: BH10 Date Drilled: 87/5/2024 Date Drilled: 29/5/2024 Rock Depth Test Type Is(50) (Mpa) Rock Type Moisture Depth Test Type Is(50) (Mpa) Rock Type Rock Structure Moisture Structure 3.15 D 0.75 SS BE D 2.7 D 0.7 LA SH М 0.91 SS BE D Α Α 0.64 SH IA м 4.55 D 1.21 SS BE D 3.41 D 1.08 SS BE D А 1.17 SS BE D А 1.14 SS BE D 5.15 D 0.87 BE D 4.62 D 1.01 BE D SS SS А 0.91 SS BE D А 1.36 SS BE D 6.77 D 0.97 5.17 SS BE D D 0.97 SS BE D 1.15 D BE D А SS BE А 1.21 SS 7.23 D 1.08 SS BE D 6.37 D 0.84 SS BE D А 1.56 SS BE D А 0.97 SS BE D 8.45 D 1.14 SS BE D 7.31 D 0.87 SS BE D D А 1.08 SS BE D А 1.11 SS BE MOISTURE CONDITION STRUCTURE TEST TYPE ROCK TYPE W= WET MA= MASSIVE A= AXIAL SS= SANDSTONE BE= BEDDED D= DIAMETRAL M= MOIST ST= SILTSTONE LA= LAMINATED I= IRREGULAR D= DRY SH= SHALE CR= CRYSTALLINE C= CUBE YS= CLAYSTONE IG= IGNEOUS

### Green Geotechnics Pty Ltd PO Box 3244, Rouse Hill NSW 2155 Phone: 0477 779 684 | Email: matt@greengeo.com.au

GREEN GREENICS

### POINT LOAD STRENGTH INDEX

Project No: GG11529 Project Address: Wilton Junction Public School, Wilton Client: SINSW C/- SMEC Test Method: AS 4133.4.1 Test Date: 30/05/2024 Tested By: MG

|                                                                            |           |              |                                                                 |                   | Page: 3 of 1 |                                            |           |              |                                                                                          |                |          |
|----------------------------------------------------------------------------|-----------|--------------|-----------------------------------------------------------------|-------------------|--------------|--------------------------------------------|-----------|--------------|------------------------------------------------------------------------------------------|----------------|----------|
| Borehole No: BH12                                                          |           |              |                                                                 | Borehole No: BH13 |              |                                            |           |              |                                                                                          |                |          |
| Date Drilled: 2                                                            | 9/5/2024  |              |                                                                 |                   |              | Date Drilled: 3                            | 30/5/2024 |              |                                                                                          |                |          |
| Depth                                                                      | Test Type | ls(50) (Mpa) | Rock Type                                                       | Rock<br>Structure | Moisture     | Depth                                      | Test Type | ls(50) (Mpa) | Rock Type                                                                                | Rock Structure | Moisture |
| 2.9                                                                        | D         | 0.18         | SH                                                              | LA                | D            | 3.61                                       | D         | 0.98         | SS                                                                                       | LA             | м        |
|                                                                            | А         | 0.52         | SH                                                              | LA                | D            |                                            | А         | 1.13         | SS                                                                                       | LA             | м        |
|                                                                            |           |              |                                                                 |                   |              |                                            |           |              |                                                                                          |                |          |
| 3.81                                                                       | D         | 1.01         | SS                                                              | BE                | D            | 4.42                                       | D         | 1.11         | SS                                                                                       | BE             | D        |
|                                                                            | A         | 1.14         | SS                                                              | BE                | D            |                                            | A         | 1.19         | SS                                                                                       | BE             | D        |
|                                                                            |           |              |                                                                 |                   |              |                                            |           |              |                                                                                          |                |          |
| 4.15                                                                       | D         | 0.96         | SS                                                              | BE                | D            | 5.31                                       | D         | 0.98         | SS                                                                                       | BE             | D        |
|                                                                            | А         | 1.31         | SS                                                              | BE                | D            |                                            | A         | 1.05         | SS                                                                                       | BE             | D        |
|                                                                            |           |              |                                                                 |                   |              |                                            | <u> </u>  |              |                                                                                          |                |          |
| 5.81                                                                       | D         | 0.92         | SS                                                              | BE                | D            | 6.5                                        | D         | 0.99         | SS                                                                                       | BE             | D        |
|                                                                            | А         | 0.98         | SS                                                              | BE                | D            |                                            | А         | 0.94         | SS                                                                                       | BE             | D        |
|                                                                            |           |              |                                                                 |                   |              |                                            |           |              |                                                                                          |                |          |
| 6.15                                                                       | D         | 1.11         | SS                                                              | BE                | D            | 7.28                                       | D         | 1.11         | SS                                                                                       | BE             | D        |
|                                                                            | А         | 1.13         | SS                                                              | BE                | D            |                                            | А         | 1.36         | SS                                                                                       | BE             | D        |
|                                                                            |           |              |                                                                 |                   |              |                                            |           |              |                                                                                          |                |          |
| 7.23                                                                       | D         | 1.08         | SS                                                              | BE                | D            | 8.08                                       | D         | 0.78         | SS                                                                                       | BE             | D        |
|                                                                            | А         | 1.11         | SS                                                              | BE                | D            |                                            | А         | 0.97         | SS                                                                                       | BE             | D        |
| 8.5                                                                        | D         | 0.89         | SS                                                              | BE                | D            |                                            |           |              |                                                                                          |                |          |
|                                                                            | А         | 0.91         | SS                                                              | BE                | D            |                                            |           |              |                                                                                          |                |          |
| STRUCTURE<br>MA= MASSIVE<br>BE= BEDDED<br>LA= LAMINATED<br>CR= CRYSTALLINE |           |              | TEST TYPE<br>A= AXIAL<br>D= DIAMETR/<br>I= IRREGULAR<br>C= CUBE |                   |              | MOISTURE C<br>W= WET<br>M= MOIST<br>D= DRY | ONDITION  |              | ROCK TYPE<br>SS= SANDSTONE<br>ST= SILTSTONE<br>SH= SHALE<br>YS= CLAYSTONE<br>IG= IGNEOUS |                |          |

### Green Geotechnics Pty Ltd PO Box 3244, Rouse Hill NSW 2155 Phone: 0477 779 684 | Email: matt@greengeo.com.au

GREEN GREEN

### POINT LOAD STRENGTH INDEX

Project No: GG11529 Project Address: Wilton Junction Public School, Wilton Client: SINSW C/- SMEC Test Method: AS 4133.4.1 Test Date: 30/05/2024 Tested By: MG

Page: 4 of 4 Borehole No: BH15 Borehole No: BH14 Date Drilled: 28/5/2024 Date Drilled: 28/5/2024 Rock Depth Test Type Is(50) (Mpa) Rock Type Moisture Depth Test Type Is(50) (Mpa) Rock Type Rock Structure Moisture Structure 4.15 D 0.75 SS BE D 2.21 D 0.87 SS BE D 0.91 SS BE D BE D Α Α 0.89 SS 5.4 D 1.21 SS BE D 3.06 D 0.78 SS BE D А 1.17 SS BE D А 0.82 SS BE D 6.72 D 0.87 BE D 4.77 D 1.12 D SS SS BE А 0.91 SS BE D А 1.17 SS BE D 7.92 D 0.97 SS BE D 5.51 D 1.07 SS BE D 1.15 D BE D А SS BE А 1.22 SS 8.27 D 1.08 SS BE D 6.67 D 0.98 SS BE D А 1.36 SS BE D А 0.97 SS BE D 7.2 D 1.01 SS BE D D А 1.12 SS BE 8.14 D 0.99 SS BE D А 1.36 SS BE D MOISTURE CONDITION STRUCTURE TEST TYPE ROCK TYPE W= WET MA= MASSIVE A= AXIAL SS= SANDSTONE BE= BEDDED D= DIAMETRAL M= MOIST ST= SILTSTONE LA= LAMINATED I= IRREGULAR D= DRY SH= SHALE CR= CRYSTALLINE C= CUBE YS= CLAYSTONE IG= IGNEOUS

## **Dynamic Cone Penetrometer Test Report**



Project Number: GG11529.001 Site Address: Wilton Junction Public School Test Date: 27/05/2024

| est Method:    | AS1289.6.3.2  |               |                    |                   | Page: 1 of 2<br>Technician: JK |              |
|----------------|---------------|---------------|--------------------|-------------------|--------------------------------|--------------|
| Test No        | BH1           | BH2           | BH3                | BH4               | BH5                            | BH6          |
| Starting Level | Surface Level | Surface Level | Surface Level      | Surface Level     | Surface Level                  | Surface Leve |
| Depth (m)      |               | Ре            | netration Resistar | nce (blows / 150m | ım)                            |              |
| 0.00 - 0.15    | 1             | 1             | 1                  | 2                 | 1                              | 1            |
| 0.15 - 0.30    | 2             | 3             | 2                  | 4                 | 2                              | 2            |
| 0.30 - 0.45    | 3             | 3             | 3                  | 10                | 2                              | 3            |
| 0.45 - 0.60    | 4             | 5             | 2                  | 22                | 3                              | 3            |
| 0.60 - 0.75    | 4             | 4             | 3                  | Refusal           | 4                              | 3            |
| 0.75 - 0.90    | 10            | 6             | 4                  |                   | 4                              | 3            |
| 0.90 - 1.05    | 16            | 7             | 8                  |                   | 5                              | 7            |
| 1.05 - 1.20    | 22            | 12            | 10                 |                   | 6                              | 14           |
| 1.20 - 1.35    | Refusal       | 12            | 16                 |                   | 22                             | 22           |
| 1.35 - 1.50    |               | 22            | 22                 |                   | Refusal                        | Refusal      |
| 1.50 - 1.65    |               | Discontinued  | Refusal            |                   |                                |              |
| 1.65 - 1.80    |               |               |                    |                   |                                |              |
| 1.80 - 1.95    |               |               |                    |                   |                                |              |
| 1.95 - 2.10    |               |               |                    |                   |                                |              |
| 2.10 - 2.25    |               |               |                    |                   |                                |              |
| 2.25 - 2.40    |               |               |                    |                   |                                |              |
| 2.40 - 2.55    |               |               |                    |                   |                                |              |
| 2.55 - 2.70    |               |               |                    |                   |                                |              |
| 2.70 - 2.85    |               |               |                    |                   |                                |              |
| 2.85 - 3.00    |               |               |                    |                   |                                |              |

## **Dynamic Cone Penetrometer Test Report**



Project Number: GG11529.001 Site Address: Wilton Junction Public School

Test Date: 27/05/2024

| t Method:      | AS1289.6.3.2  | ,                         | Technician: JK |
|----------------|---------------|---------------------------|----------------|
| Test No        | BH7           |                           |                |
| Starting Level | Surface Level |                           |                |
| Depth (m)      |               | Penetration Resistance (b | lows / 150mm)  |
| 0.00 - 0.15    | 1             |                           |                |
| 0.15 - 0.30    | 2             |                           |                |
| 0.30 - 0.45    | 3             |                           |                |
| 0.45 - 0.60    | 3             |                           |                |
| 0.60 - 0.75    | 4             |                           |                |
| 0.75 - 0.90    | 6             |                           |                |
| 0.90 - 1.05    | 8             |                           |                |
| 1.05 - 1.20    | 9             |                           |                |
| 1.20 - 1.35    | 10            |                           |                |
| 1.35 - 1.50    | 22            |                           |                |
| 1.50 - 1.65    | Refusal       |                           |                |
| 1.65 - 1.80    |               |                           |                |
| 1.80 - 1.95    |               |                           |                |
| 1.95 - 2.10    |               |                           |                |
| 2.10 - 2.25    |               |                           |                |
| 2.25 - 2.40    |               |                           |                |
| 2.40 - 2.55    |               |                           |                |
| 2.55 - 2.70    |               |                           |                |
| 2.70 - 2.85    |               |                           |                |
| 2.85 - 3.00    |               |                           |                |

# **SAMPLING & IN-SITU TESTING**



### Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock. Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure. Undisturbed samples are taken by pushing a thin walled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength and are necessary for laboratory determination of shear strength and compressibility.

### Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the in-situ soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator.

### Large Diameter Augers

Boreholes can be drilled using a large diameter auger, typically up to 300 mm or larger in diameter mounted on a standard drilling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content.

### **Continuous Spiral Flight Augers**

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole.

### Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration.

### Diamond Core Rock Drilling

A continuous core sample of can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter (NMLC). The borehole is advanced using a water or mud flush to lubricate the bit and removed cuttings.

### Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1. The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable, and the test is discontinued.

The test results are reported in the following form.

- In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:
  - 4,6,7 N=13
- In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as: 15, 30/40 mm.

The results of the SPT tests can be related empirically to the engineering properties of the soils.

### Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

# **SOIL DESCRIPTIONS**



### **Description and Classification Methods**

The methods of description and classification of soils and rocks used in this report are based on Australian Standard AS 1726, Geotechnical Site Investigations Code. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

### Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

| Туре               | Particle Size (mm) |
|--------------------|--------------------|
| Boulder >200       | Boulder >200       |
| Cobble 63 - 200    | Cobble 63 - 200    |
| Gravel 2.36 - 63   | Gravel 2.36 - 63   |
| Sand 0.075 - 2.36  | Sand 0.075 - 2.36  |
| Silt 0.002 - 0.075 | Silt 0.002 - 0.075 |
| Clay <0.002        | Clay <0.002        |

The sand and gravel sizes can be further subdivided as follows:

| Туре          | Particle Size (mm) |
|---------------|--------------------|
| Coarse Gravel | 20 - 63            |
| Medium Gravel | 6 – 20             |
| Fine Sand     | 2.36 - 6           |
| Coarse Sand   | 0.6 - 2.36         |
| Medium Sand   | 0.2 - 0.6          |
| Fine Sand     | 0.075 – 0.2        |

The proportions of secondary constituents of soils are described as:

| Term            | Proportion |
|-----------------|------------|
| And             | Specify    |
| Adjective       | 20 - 35%   |
| Slightly        | 12 - 20%   |
| With some       | 5 - 12%    |
| With a trace of | 0 - 5%     |

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

### **Cohesive Soils**

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

| Description | Abbreviation | Undrained<br>Shear Strength<br>(kPa) |
|-------------|--------------|--------------------------------------|
| Very soft   | VS           | <12                                  |
| Soft        | S            | 12 - 25                              |
| Firm        | F            | 25 - 50                              |
| Stiff       | ST           | 50 - 100                             |
| Very stiff  | VST          | 100 - 200                            |
| Hard        | Н            | 200                                  |

### **Cohesionless Soils**

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (DCP). The relative density terms are given below:

| Relative<br>Density | Abbreviation | SPT N<br>Value | CPT qc<br>value<br>(MPa) |
|---------------------|--------------|----------------|--------------------------|
| Very loose          | VL           | <4             | <2                       |
| Loose               | L            | 4 - 10         | 2 -5                     |
| Medium              | MD           | 10-30          | 5-15                     |
| Dense               |              |                |                          |
| Dense               | D            | 30-50          | 15-25                    |
| Very                | VD           | >50            | >25                      |
| Dense               |              |                |                          |

### Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Transported soils formed somewhere else and transported by nature to the site; or
- Fill moved by man.

Transported soils may be further subdivided into:

- Alluvium river deposits
- Lacustrine lake deposits
- Aeolian wind deposits
- Littoral beach deposits
- Estuarine tidal river deposits
- Talus scree or coarse colluvium
- Slopewash or Colluvium transported downslope by gravity assisted by water. Often includes angular rock fragments and boulders.

# **ROCK DESCRIPTIONS**



### Rock Strength

The Rock strength is defined by the Point Load Strength Index ( $Is_{(50)}$ ) and refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects. The test procedure is described by Australian Standard 4133.4.1 - 1993. The terms used to describe rock strength are as follows:

| Term          | Abbreviation | Point Load Index IS <sub>(50)</sub> MPa | Approximate Unconfined<br>Compressive Strength<br>MPa* |
|---------------|--------------|-----------------------------------------|--------------------------------------------------------|
| Extremely low | EL           | <0.03                                   | <0.6                                                   |
| Very low      | VL           | 0.03 - 0.1                              | 0.6 - 2                                                |
| Low           | L            | 0.1 - 0.3                               | 2 - 6                                                  |
| Medium        | М            | 0.3 - 1.0                               | 6 - 20                                                 |
| High          | Н            | 1 - 3                                   | 20 - 60                                                |
| Very high     | VH           | 3 - 10                                  | 60 - 200                                               |

\* Assumes a ration of 20:1 for UCS to IS(50)

### Degree of Weathering

The degree of weathering of rock is classified as follows:

| Term                 | Abbreviation | Description                                                                      |
|----------------------|--------------|----------------------------------------------------------------------------------|
| Residual Soil        | RS           | Soil developed on extremely weathered rock, the mass structure and               |
|                      |              | substance fabric are no longer evident.                                          |
| Extremely weathered  | EW           | Rock substance has soil properties, i.e. it can be remoulded and classified as a |
|                      |              | soil but the texture of the original rock is still evident.                      |
| Highly weathered     | HW           | Limonite staining or bleaching affects whole of rock substance and other signs   |
|                      |              | of decomposition are evident. Porosity and strength may be altered as a          |
|                      |              | result of iron leaching or deposition. Colour and strength of original fresh     |
|                      |              | rock is not recognisable.                                                        |
| Distinctly Weathered | DW           | Rock strength usually changed by weathering. The rock may be highly              |
|                      |              | discoloured usually by iron staining.                                            |
| Moderately weathered | MW           | Staining and discolouration of rock substance has taken place.                   |
| Slightly weathered   | SW           | Rock substance is slightly discoloured but shows little or no change of          |
|                      |              | strength from fresh rock.                                                        |
| Fresh                | FR           | No signs of decomposition or staining.                                           |

### Degree of Fracturing

The following classification applies to the spacing of natural fractures in core samples (bedding plane partings, joints and other defects, excluding drilling breaks

| Term               | Description                                                        |
|--------------------|--------------------------------------------------------------------|
| Fragmented         | Fragments of <20 mm                                                |
| Highly Fractured   | Core lengths of 20-40 mm with some fragments                       |
| Fractured Core     | Core lengths of 40-200 mm with some shorter and longer<br>sections |
| Slightly Fractured | Core lengths of 200-1000 mm with some shorter and loner sections   |
| Unbroken           | Unbroken Core lengths mostly > 1000 mm                             |

### Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

| Term                | Separation of<br>Stratification Planes |
|---------------------|----------------------------------------|
| Thinly laminated    | 6 mm                                   |
| Laminated           | 6 mm to 20 mm                          |
| Very thinly bedded  | 20 mm to 60 mm                         |
| Thinly bedded       | 60 mm to 0.2 m                         |
| Medium bedded       | 0.2 m to 0.6 m                         |
| Thickly bedded      | 0.6 m to 2 m                           |
| Very thickly bedded | 2 m                                    |

### **Rock Quality Designation**

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % =

<u>cumulative length of 'sound' core sections  $\geq$  100 mm long</u> total drilled length of section being assessed

'sound' rock is assessed to be rock of low strength or better. The RQD applies only to natural fractures. If the core is broken by drilling/handling, then the broken pieces are fitted back together and are not included in the calculation of RQD.

# **ABBREVIATIONS**



### Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

### Drilling or Excavation Methods

| С    | Core Drilling            |
|------|--------------------------|
| R    | Rotary drilling          |
| ADT  | Auger Drill TC Bit       |
| ADV  | Auger Drill V Brit       |
| NMLC | Diamond core - 52 mm dia |
| NQ   | Diamond core - 47 mm dia |
| HQ   | Diamond core - 63 mm dia |
| PQ   | Diamond core - 81 mm dia |

### Water

- Ζ Water seep
- ٧ Water level

### Sampling and Testing

| А   | Auger sample                   | са    | calcite     |
|-----|--------------------------------|-------|-------------|
| В   | Bulk sample                    | cbs   | carbonaceou |
| D   | Disturbed sample               | cly   | clay        |
| S   | Chemical sample                | fe    | iron oxide  |
| U50 | Undisturbed tube sample (50mm) | mn    | manganese   |
| W   | Water sample                   | slt   | silty       |
| PP  | Pocket Penetrometer (kPa)      |       |             |
| PL  | Point load strength Is(50) MPa |       |             |
|     |                                | Chana | 2           |

- Standard Penetration Test S
- ٧ Shear vane (kPa)

### Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

### Defect Type

| С  | Crushed Seam             | ро    | р  |
|----|--------------------------|-------|----|
| DB | Drilling Break           | rf    | rc |
| DL | Drilling Lift            | sl    | sl |
| EW | Extremely Weathered Seam | sm    | sr |
| НВ | Handling Break           | vr    | v  |
| IS | Infilled Seam            |       |    |
| J  | Joint                    | Other |    |
| MB | Mechanical Break         |       |    |
| Р  | Parting                  | fg    | fr |
| S  | Sheared Surface          | bnd   | ba |
| SS | Sheared Seam             | qtz   | qı |
| SZ | Sheared Zone             |       |    |

### Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

| h | horizontal |
|---|------------|
| v | vertical   |

- sh sub-horizontal
- sub-vertical sv

### Coating or Infilling Term

| cn | clean   |
|----|---------|
| ct | coating |
| sn | stained |
| vn | veneer  |

### **Coating Descriptor**

| са  | calcite      |
|-----|--------------|
| cbs | carbonaceous |
| cly | clay         |
| fe  | iron oxide   |
| mn  | manganese    |
| slt | silty        |

### Shape

| cu | curved     |
|----|------------|
| ir | irregular  |
| pr | planar     |
| st | stepped    |
| un | undulating |

### Roughness

| 00 | polished     |
|----|--------------|
| ſ  | rough        |
| sl | slickensided |
| sm | smooth       |
| vr | very rough   |
|    |              |

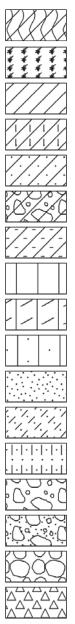
| g   | fragmented |
|-----|------------|
| ond | band       |
| qtz | quartz     |

# **SYMBOLS**



### Graphic Symbols for Soil and Rock

### General




Asphalt Road base

Concrete

Filling

### Soils



Peat

Clay

Silty clay

Sandy clay

Gravelly clay

Shaly clay

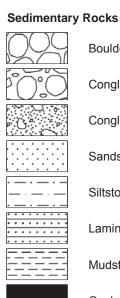
Silt

Clayey silt

Sandy silt

Sand

Clayey sand


Silty sand

Gravel

Sandy gravel

Cobbles, boulders

Talus



Conglomeratic sandstone

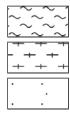
Conglomerate

Boulder conglomerate

Sandstone

Siltstone

Laminite


Mudstone, claystone, shale

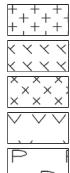


Coal

Limestone

### Metamorphic Rocks




Slate, phyllite, schist

Gneiss

Quartzite

Granite

### Igneous Rocks



Dolerite, basalt, andesite

Dacite, epidote

Tuff, breccia

Porphyry



## UNIFIED SOIL CLASSIFICATION TABLE

|                                                                                    |                                                     |                                                                                                         |                                                                                                                                                |                                                                      | Group<br>Symbols                               | Typical Names                                              | Information Required for Describing<br>Soils                     |                                                                                                         | Labo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ratory Classification Criteria                                                                    |                                                                                                                             |                                                                                                                                                          |  |
|------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                    |                                                     | oarse<br>nm sieve                                                                                       | Clean gravels<br>(little or no<br>fines)                                                                                                       | 0 0                                                                  | ain size and substant<br>ermediate particle si |                                                            | GW                                                               | Well graded gravels, gravel-sand<br>mixtures, little or no fines                                        | Give typical name: indicative approximate percentages of sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                   | e size)                                                                                                                     | $C_u = \frac{D_{E0}}{D_{E0}}$ Greater than 4<br>$D_1 C_c = \frac{D_{E0}}{D_{10} \times D_{E0}}$ Between 1 and 3<br>$D_{10} \times D_{E0}$                |  |
| sieve size                                                                         |                                                     | Gravels<br>half of the c<br>er than a 4n                                                                | Clean<br>(little<br>fir                                                                                                                        |                                                                      | one size or range of<br>ermediate sizes miss   |                                                            | GP                                                               | Poorly graded gravels, grave-sand mixtures, little or no fines                                          | and gravel; maximum size;<br>angularity; surface condition, and<br>hardness of the coarse grains; local<br>of geologic name and other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                   | curve<br>5um sieve<br>mbol                                                                                                  | Not meeting all graduation requirements for<br>GW                                                                                                        |  |
| hat 75um                                                                           |                                                     | Gra<br>re than ha<br>n is larger                                                                        | More than half of the coarse<br>fraction is larger than a 4mm sieve<br>Gravels with<br>fines<br>(appreciable (little or no<br>amount of fines) | Nonplastic fines (for identification procedures see <i>ML</i> below) | GM                                             | Silty gravels, poorly graded gravel-<br>sand-silt mixtures | pertinent descriptive information;<br>and symbols in parentheses |                                                                                                         | grain size curve<br>ler than 75um s<br>of dual symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Atterberg limits<br>below "A" line or PI<br>less than 4 Adove "A" line with<br>PI between 4 and 7 |                                                                                                                             |                                                                                                                                                          |  |
| ained soils<br>I is large th                                                       |                                                     | Mor<br>fraction                                                                                         |                                                                                                                                                | Plastic fines (for identification procedures see CL below)           |                                                | GC                                                         | Clayey gravels, poorly graded gravel-<br>sand-clay mixtures      | For undisturbed soils add information<br>on stratification, degree of<br>compactness, cementation,      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and sand from g<br>s (fraction small<br>as follows<br>P<br>c<br>s requiring use                   | Atterberg limits<br>above "A" line with<br>PI greater than 7<br>Are borderline cases<br>of requiring use of<br>dual symbols |                                                                                                                                                          |  |
| Coarse-grained soils<br>of the material is large that 75um sieve size <sup>b</sup> | ıked eye                                            | coarse<br>1 a 4mm                                                                                       | Clean sands<br>(little or no<br>fines)                                                                                                         |                                                                      | ain size and substant<br>ermediate particle si |                                                            | sw                                                               | Well graded sands, gravelly sands,<br>little or no fines                                                | Example:<br>Silty Sand, gravelly; about 20% hard,<br>angular gravel particles 12mm<br>maximum size; rounded and<br>subangular sand grains, coarse to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | intification<br>fraction<br>of fines (fraction                                                    | gravel ar<br>of fines (<br>ssified a<br>SW, SP<br>SM, SC<br>SM, SC                                                          | $C_{u} = \frac{D_{60}}{D_{10}}$ Greater than 6<br>$D_{10}$ $C_{c} = \frac{(D_{20})^{2}}{D_{10} \times D_{60}}$ Between 1 and 3<br>$D_{10} \times D_{60}$ |  |
| an half of                                                                         | I<br>is about the particle visible to the naked eye | Sands<br>n half of the coarse<br>smaller than a 4mm<br>sieve                                            | Clear<br>(littld<br>fi                                                                                                                         |                                                                      | one size or range of<br>ermediate sizes miss   |                                                            | SP                                                               | Poorly graded sands, gravelly sands,<br>little or no fines                                              | Silty Sand, gravelly; about 20% hard,<br>angular gravel particles 12mm<br>maximum size; rounded and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ler field id                                                                                      | ntages of<br>rcentage<br>jils are cla<br>GW, GP<br>GM, GC<br>Borderli                                                       | Not meeting all graduation requirements for<br>SW                                                                                                        |  |
| More than half                                                                     | icle visible                                        | Sa<br>More than ha<br>fraction is sma                                                                   | Sands with<br>fines<br>(appreciable<br>amount of<br>fines)                                                                                     | Nonplastic fines                                                     | (for identification pr<br>below)               | ocedures see ML                                            | SM                                                               | Silty sands, poorly graded sand-silt<br>mixtures                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                   |                                                                                                                             | Atterberg limits<br>below "A" line or PI<br>less than 5<br>are borderline cases                                                                          |  |
|                                                                                    | t the part                                          |                                                                                                         | Sand<br>fir<br>(appre<br>amou                                                                                                                  | Plastic fines (for ic                                                | dentification proced                           | ires see CL below)                                         | SC                                                               | Clayey sands, poorly graded sand-<br>clay mixtures                                                      | and moist in place; alluvial sand;<br>(SM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | fractions as given                                                                                | Determ<br>Depend<br>coarse<br>Less th<br>More t<br>5 to 12                                                                  | Atterberg limits<br>above "A" line with<br>Pl greater than 7                                                                                             |  |
|                                                                                    | abou                                                | Identification Procedures of Fractions Smaller than 380 um Sieve Size                                   |                                                                                                                                                |                                                                      |                                                | /e Size                                                    |                                                                  |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | he fra                                                                                            |                                                                                                                             |                                                                                                                                                          |  |
| n sieve size                                                                       | 75um sieve size is                                  |                                                                                                         | ess than                                                                                                                                       | Dry Strength<br>(crushing<br>characteristics)                        | Dilatancy<br>(reaction to<br>shaking)          | Toughness<br>(consistency<br>near plastic<br>limit)        |                                                                  |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | curve in identifying the                                                                          | PLASTICITY CHART                                                                                                            |                                                                                                                                                          |  |
| Find-grained soils<br>material is smaller the<br>The                               | The 75um s                                          | Silts and clays liquid limit less than 50                                                               |                                                                                                                                                | None to slight                                                       | Quick to slow                                  | None                                                       | ML                                                               | Inorganic silts and very fine sands,<br>rock flour, silty or clayey fine sands<br>with slit plasticity  | Give typical name: indicative degree<br>and character of plasticity, amount<br>and maximum size of coarse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e curve in i                                                                                      | (%) <b>(ia)</b>                                                                                                             |                                                                                                                                                          |  |
|                                                                                    | F                                                   |                                                                                                         |                                                                                                                                                | Medium to<br>high                                                    | None to very<br>slow                           | Medium                                                     | CL                                                               | Inorganic clays of low to medium<br>plasticity, gravelly clays, sandy clays,<br>silty clays, lean clays | grains; colour in wet condition, grains; colour in wet condition, dour if any, local or geologic control contr |                                                                                                   | A LINE:<br>PI = 0.73(LL-20)                                                                                                 |                                                                                                                                                          |  |
|                                                                                    |                                                     |                                                                                                         | Silts an                                                                                                                                       | Slight to<br>medium                                                  | Slow                                           | Slight                                                     | OL                                                               | Organic silts and organic silt-clays of<br>low plasticity                                               | symbol in parentneses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                   | CL MH&OH                                                                                                                    |                                                                                                                                                          |  |
| than half of the                                                                   |                                                     | liquid<br>nan 50                                                                                        |                                                                                                                                                | Slight to<br>medium                                                  | Slow to none                                   | Slight to<br>medium                                        | МН                                                               | Inorganic silts, micaceous or<br>diatomaceous fine sandy or silty<br>soils, clastic silts               | For undisturbed soils add information<br>on structure, stratification,<br>consistency in undisturbed and<br>remoulded states, moisture and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                   | MLML&OL<br>20 30 40 50 60 70 80 90 100                                                                                      |                                                                                                                                                          |  |
| More than h                                                                        |                                                     |                                                                                                         | s and clays liquid<br>t greater than 50                                                                                                        | High to very<br>high                                                 | None                                           | High                                                       | СН                                                               | Inorganic clays of high plasticity, fat<br>clays                                                        | drainage conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                   |                                                                                                                             | LIQUID LIMIT (LL) (%)                                                                                                                                    |  |
|                                                                                    |                                                     |                                                                                                         | Silts and c<br>limit great                                                                                                                     |                                                                      | None to very<br>slow                           | Slight to<br>medium                                        | он                                                               | Organic clays of medium to high<br>plasticity                                                           | Example:<br><i>Clayey Silt</i> , brown; slightly plastic;<br>small percentage of fine sand;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                   |                                                                                                                             |                                                                                                                                                          |  |
|                                                                                    | ŀ                                                   | Highly Organic Soils Readily identified by colour, odour, spongy feel and frequently by fibrous texture |                                                                                                                                                |                                                                      | Pt                                             | Peat and other highly organic soils                        | numerous vertical root holes; firm and dry in place; loess; (ML) |                                                                                                         | For labo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Plasticity Chart<br>ratory classification of fine-grained soils                                   |                                                                                                                             |                                                                                                                                                          |  |

Note: 1 Soils possessing characteristics of two groups are designated by combinations of group symbols (eg. GW-GC, well graded gravel-sand mixture with clay fines

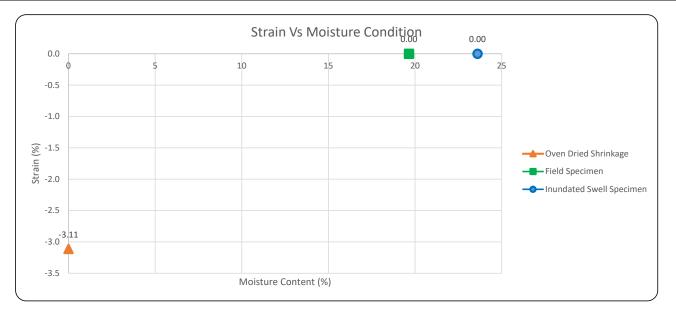
2 Soils with liquid limits of the order of 35 to 50 may be visually classified as being of medium plasticity

## **APPENDIX B**

## LABORATORY TEST RESULTS






### ASCT Illawarra

Postal: 2/15 Miall Way, Albion Park Rail NSW 2527 Lab: 2/15 Miall Way, Albion Park Rail NSW 2527 Telephone: +61 (02) 4256 1684 E-Mail: illawarra@asct.com.au Mobile: 0497 979 929 A.B.N. 34 635 062 609

| Report on Shrink / Swell Index of a Soil |                                                            |                     |             |  |  |  |  |
|------------------------------------------|------------------------------------------------------------|---------------------|-------------|--|--|--|--|
| Client:                                  | 33-769-MQ                                                  |                     |             |  |  |  |  |
| Client Address:                          | Unit 10, 6 Gladstone Road, Castle Hill NSW 2154            | Report Date:        | 12/06/2024  |  |  |  |  |
| Project:                                 | Geotechnical Testing                                       | Report Page:        | Page 1 of 1 |  |  |  |  |
| Works Component:                         | 11 Greenbridge Dr, Wilton                                  | Project No:         | 33          |  |  |  |  |
| Material Used:                           | Insitu                                                     | Test Request/Order: | -           |  |  |  |  |
| Material Description:                    | Silty CLAY                                                 | Lot Number:         | GG11529     |  |  |  |  |
| Lab Test Date/s:                         | Testing commenced 04/06/2024 and was completed 05/06/2024. | ITP/PCP Number:     | -           |  |  |  |  |
| Lot Comments:                            | -                                                          | Control Line:       | -           |  |  |  |  |

| Sample Number | Sample Date | Chainage/Location | Offset | Level of Test | Test Depth |
|---------------|-------------|-------------------|--------|---------------|------------|
| 24237         | 27/05/2024  | BH2               | -      | 0.6 - 0.9     | -          |

| Parameters                         | Units | Test Results | Soil Description        |  |
|------------------------------------|-------|--------------|-------------------------|--|
| Shrinkage - Field Moisture Content | %     | 19.8         |                         |  |
| Swell - Field Moisture Content     | %     | 19.5         |                         |  |
| Swell - Inundated Moisture Content | %     | 23.6         |                         |  |
| Inert Inclusions in the soil       | %     | 0            | CH Silty CLAY red,brown |  |
| Extent of Soil Crumbling           | -     | None         |                         |  |
| Extent of Soil Cracking            | -     | Minor        |                         |  |
| Shrink-Swell Index                 | %     | 1.7          | 1                       |  |



| Sampling & Test Methods (Results relate only to the items sampled/tested)                                                      | Report Remarks & Endorsement                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| AS 1289.7.1.1, Cl 4: (2003) Shrink Swell Index - Thin wall sampler (U50)<br>AS 1289.7.1.1: (2003) Shrink Swell Index of a Soil | Issued By:<br>Accredited for compliance with<br>ISO/IEC 17025 - Testing.<br>NATA Accreditation number: 20656 |
|                                                                                                                                | WB063 - Rev 7. 06/02/2023                                                                                    |



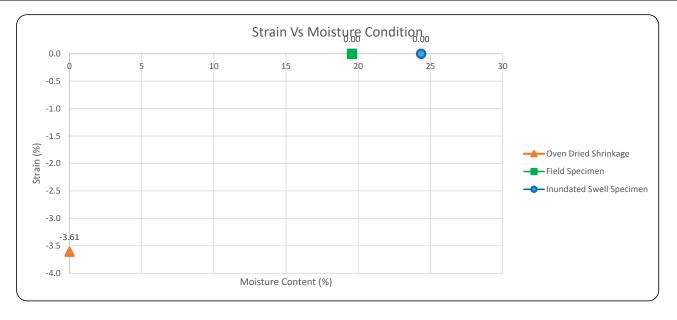
### ASCT Illawarra

 Postal: 2/15 Miall Way, Albion Park Rail NSW 2527

 Lab: 2/15 Miall Way, Albion Park Rail NSW 2527

 Telephone:
 +61 (02) 4256 1684

 E-Mail:
 illawarra@asct.com.au


 Mobile:
 0497 979 929

 A.B.N.
 34 635 062 609

|                       | Report on Shrink / Swell Index of a Soil                   |                     |             |  |  |  |  |  |
|-----------------------|------------------------------------------------------------|---------------------|-------------|--|--|--|--|--|
| Client:               | ASCT Sydney South Laboratory                               | Report No:          | 33-770-MQ   |  |  |  |  |  |
| Client Address:       | Unit 10, 6 Gladstone Road, Castle Hill NSW 2154            | Report Date:        | 12/06/2024  |  |  |  |  |  |
| Project:              | Geotechnical Testing                                       | Report Page:        | Page 1 of 1 |  |  |  |  |  |
| Works Component:      | 11 Greenbridge Dr, Wilton                                  | Project No:         | 33          |  |  |  |  |  |
| Material Used:        | Insitu                                                     | Test Request/Order: | -           |  |  |  |  |  |
| Material Description: | Silty CLAY                                                 | Lot Number:         | GG11529     |  |  |  |  |  |
| Lab Test Date/s:      | Testing commenced 04/06/2024 and was completed 05/06/2024. | ITP/PCP Number:     | -           |  |  |  |  |  |
| Lot Comments:         | -                                                          | Control Line:       | -           |  |  |  |  |  |

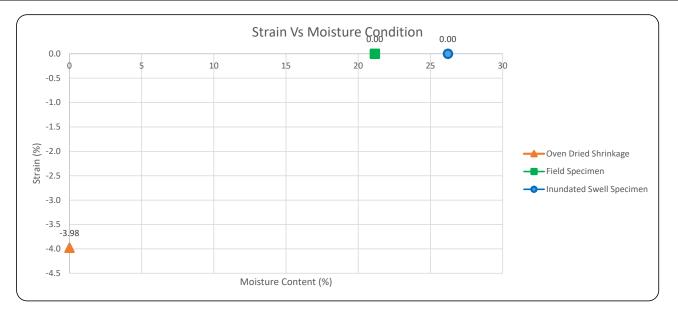
| Sample Number | Sample Date | Chainage/Location | Offset | Level of Test | Test Depth |
|---------------|-------------|-------------------|--------|---------------|------------|
| 24238         | 27/05/2024  | BH6               | -      | 0.6 - 0.8     | -          |

| Parameters                         | Units | Test Results | Soil Description  |
|------------------------------------|-------|--------------|-------------------|
| Shrinkage - Field Moisture Content | %     | 19.3         |                   |
| Swell - Field Moisture Content     | %     | 19.8         |                   |
| Swell - Inundated Moisture Content | %     | 24.4         |                   |
| Inert Inclusions in the soil       | %     | 0            | CH Silty CLAY red |
| Extent of Soil Crumbling           | -     | None         |                   |
| Extent of Soil Cracking -          |       | Minor        |                   |
| Shrink-Swell Index                 | %     | 2.0          |                   |



| Sampling & Test Methods (Results relate only to the items sampled/tested)                                                      | Report Remarks & Endorsement                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| AS 1289.7.1.1, Cl 4: (2003) Shrink Swell Index - Thin wall sampler (U50)<br>AS 1289.7.1.1: (2003) Shrink Swell Index of a Soil | Accredited for compliance with<br>ISO/IEC 17025 - Testing.<br>NATA Accreditation number: 20656 |
|                                                                                                                                | WB063 - Rev 7, 06/02/2023                                                                      |




### ASCT Illawarra

Postal: 2/15 Miall Way, Albion Park Rail NSW 2527 Lab: 2/15 Miall Way, Albion Park Rail NSW 2527 Telephone: +61 (02) 4256 1684 E-Mail: illawarra@asct.com.au Mobile: 0497 979 929 A.B.N. 34 635 062 609

|                       | Report on Shrink / Swell Index of a Soil                   |                     |             |  |  |  |  |  |
|-----------------------|------------------------------------------------------------|---------------------|-------------|--|--|--|--|--|
| Client:               | ASCT Sydney South Laboratory                               | Report No:          | 33-771-MQ   |  |  |  |  |  |
| Client Address:       | Unit 10, 6 Gladstone Road, Castle Hill NSW 2154            | Report Date:        | 12/06/2024  |  |  |  |  |  |
| Project:              | Geotechnical Testing                                       | Report Page:        | Page 1 of 1 |  |  |  |  |  |
| Works Component:      | 11 Greenbridge Dr, Wilton                                  | Project No:         | 33          |  |  |  |  |  |
| Material Used:        | Insitu                                                     | Test Request/Order: | -           |  |  |  |  |  |
| Material Description: | Silty CLAY                                                 | Lot Number:         | GG11529     |  |  |  |  |  |
| Lab Test Date/s:      | Testing commenced 04/06/2024 and was completed 05/06/2024. | ITP/PCP Number:     | -           |  |  |  |  |  |
| Lot Comments:         | -                                                          | Control Line:       | -           |  |  |  |  |  |

| Sample Number | Sample Date | Chainage/Location | Offset | Level of Test | Test Depth |
|---------------|-------------|-------------------|--------|---------------|------------|
| 24239         | 27/05/2024  | BH7               | -      | 0.6 - 0.8     | -          |

| Parameters U                       |   | Test Results | Soil Description  |
|------------------------------------|---|--------------|-------------------|
| Shrinkage - Field Moisture Content | % | 21.1         |                   |
| Swell - Field Moisture Content     | % | 21.2         |                   |
| Swell - Inundated Moisture Content | % | 26.2         |                   |
| Inert Inclusions in the soil       | % | 0            | CH Silty CLAY red |
| Extent of Soil Crumbling           | - | None         |                   |
| Extent of Soil Cracking            | - | Minor        |                   |
| Shrink-Swell Index                 | % | 2.2          | 1                 |



| Sampling & Test Methods (Results relate only to the items sampled/tested)                                                      | Report Remarks & Endorsement                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| AS 1289.7.1.1, Cl 4: (2003) Shrink Swell Index - Thin wall sampler (U50)<br>AS 1289.7.1.1: (2003) Shrink Swell Index of a Soil |                                                                                                |
|                                                                                                                                | Accredited for compliance with<br>ISO/IEC 17025 - Testing.<br>NATA Accreditation number: 20656 |
|                                                                                                                                | WB063 - Rey 7. 06/02/2023                                                                      |



### ASCT Sydney South

Postal: Unit 10, 6 Gladstone Road, Castle Hill NSW 2154Lab: 6 Gladstone Road, Castle Hill NSW 2154Telephone:(02) 9725 5842E-Mail:sydney.south@asct.com.auMobile:0410 609 142A.B.N.92 328 384 368

|                                                                                                                   |                                        |                               | _                                      | A.B.N.                                                                                   | 92 328 384 368                                                                                 |                                 |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------|----------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------|
|                                                                                                                   |                                        |                               | -                                      | S CBR and MDD                                                                            |                                                                                                |                                 |
| Client: Green Geotechnics Pty Ltd                                                                                 |                                        |                               |                                        | Report No                                                                                | 241-606-C                                                                                      | BR                              |
| Client Address:                                                                                                   | Po Box 3244, Rouse Hill, NSW, 2155     |                               |                                        | Report Date: 13/06/2024                                                                  |                                                                                                |                                 |
| Project:                                                                                                          | Material Testin                        | g                             |                                        | Report Page: Page 1 of 1                                                                 |                                                                                                | L                               |
| Works Component:                                                                                                  | 11 Greenbridge                         | Dr, Wilton                    |                                        | Project No                                                                               |                                                                                                |                                 |
| Material Used (Source):                                                                                           | Insitu                                 |                               |                                        | Test Request/Order: GG11529                                                              |                                                                                                |                                 |
| Material Description:                                                                                             | Silty Clay                             |                               |                                        | Lot Numb                                                                                 |                                                                                                |                                 |
| Lot Boundaries:                                                                                                   | -                                      |                               | ITP/PCP N                              | umber: -                                                                                 |                                                                                                |                                 |
|                                                                                                                   | Laboratory test                        | ing 01/06/2                   | 2024 to 13/06/2024                     | Control Li                                                                               |                                                                                                |                                 |
|                                                                                                                   | Sample Date                            | -                             | inage/Location                         | Offset                                                                                   | Level of Test                                                                                  | Test Depth                      |
| 44016                                                                                                             | 27/05/2024                             |                               | N/A                                    | N/A                                                                                      | BH4                                                                                            | 0.4-1.1                         |
| Parameters                                                                                                        |                                        | Units                         | Test Results                           |                                                                                          | Information                                                                                    |                                 |
| Pretreatment Regime                                                                                               |                                        |                               | No Pretreatment                        |                                                                                          |                                                                                                |                                 |
| Portion Retained on AS                                                                                            | Sieve                                  | %                             | 0% on 19mm                             |                                                                                          | Retained material exc                                                                          | luded from CBR                  |
| Material Plasticity (Liqui                                                                                        |                                        |                               | Low (Less than 35%)                    | I                                                                                        | By Technician's Assess                                                                         |                                 |
| Sample Curing Time                                                                                                |                                        | hrs                           | MDD = 73  hrs                          | CBR = 170 hrs                                                                            | 27 . connetan 3 753653                                                                         |                                 |
| Soil Particle Density                                                                                             |                                        | t/m3                          | 2.67                                   | CBR - 170 m3                                                                             | Estimated value only*                                                                          | *                               |
| Maximum Dry Density (                                                                                             | (חחש)                                  |                               | 1.500                                  |                                                                                          | Standard compactive                                                                            |                                 |
| Optimum Moisture Con                                                                                              |                                        | t/m3<br>%                     | 1.500                                  |                                                                                          | Stanuaru compactive                                                                            | enon                            |
|                                                                                                                   |                                        |                               | Field %                                | Dron 10 2 0/                                                                             | Dessing 10.0mm re-t                                                                            | 22                              |
| Field/Prep Moisture Cor                                                                                           |                                        | %                             |                                        | Prep 18.3 %                                                                              | Passing 19.0mm portion                                                                         |                                 |
| Compaction Moisture C                                                                                             |                                        | %                             | Achieved 14.6 %                        | LMR = 99.0%                                                                              | Specified LMR = 100%                                                                           |                                 |
| Compaction Dry Density                                                                                            | у                                      | t/m3                          | Achieved 1.5 t/m3                      | LDR = 100.0%                                                                             | Specified LDR = 100%                                                                           |                                 |
| Surcharge Load                                                                                                    |                                        | kg                            | 4.5                                    |                                                                                          |                                                                                                |                                 |
| Period of Soaking                                                                                                 |                                        | Days                          | Soaked - 4 Days                        |                                                                                          | Dry Density (after soa                                                                         | king) = 1.49 t/m3.              |
| Specimen Swell                                                                                                    | 20                                     | %                             | 0.5                                    |                                                                                          |                                                                                                |                                 |
| Moisture Content - Top                                                                                            |                                        | %                             | 21.2                                   |                                                                                          | After Penetration                                                                              |                                 |
| Moisture Content - Rem                                                                                            | naining                                | %                             | 18.2                                   | After Penetration                                                                        |                                                                                                |                                 |
| Dry Density Vs N                                                                                                  | /loisture Co                           | ontent                        | Load-Pe                                | netration Curve                                                                          | tion Curve Material CBR Value                                                                  |                                 |
| 1.54<br>1.52<br>1.50<br>1.48<br>1.46<br>1.44<br>1.42<br>1.40<br>10.0 11.0 12.0 13.0<br>Moist                      | 14.0 15.0 16.0 17.<br>ture Content (%) | 0 18.0                        | 2500<br>2000<br>1000<br>500<br>0 1 2 3 | 4 5 6 7 8 9 10 11 12 13<br>Penetration (mm)                                              | California Bea<br>CBR <sub>2.5</sub> =<br>CBR <sub>5.0</sub> =<br>Including an Applie<br>0.0 m | 7<br>7<br>7<br>ed Correction of |
| Sampling & Test Method                                                                                            | s (Results relate o                    | only to the it                | ems sampled/tested)                    | Report R                                                                                 | emarks & Endorsement                                                                           |                                 |
| AS 1289.1.1: (2001)Prepar<br>AS1289.2.1.1: (2005) Mois<br>AS1289.5.1.1: (2017)Dry D<br>AS1289.6.1.1: (2014)Califo | ture Content of a<br>ensity/Moisture c | Soil (Oven D<br>content relat | rying)<br>ion of a soil (Standard)     | Accredited for compliance with<br>ISO/IEC 17025 - Testing.<br>NATA Accreditation number: | Issued By:Appro                                                                                | A.Clout<br>ved Signatory        |
| ** NATA accreditation                                                                                             | n does not cover t                     | he perform:                   | ance of this service                   |                                                                                          |                                                                                                | 011 - Rev 31, 06/02/202         |



### ASCT Sydney South

Postal: Unit 10, 6 Gladstone Road, Castle Hill NSW 2154Lab: 6 Gladstone Road, Castle Hill NSW 2154Telephone:(02) 9725 5842E-Mail:sydney.south@asct.com.auMobile:0410 609 142A.B.N.92 328 384 368

|                                                                                                            |                                            |                               | _                                   | A.B.N.                                                                                   | 92 328 384 368                                                                                       |                                                |  |  |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------|-------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------|--|--|
|                                                                                                            |                                            |                               | Report on A                         | S CBR and MDD                                                                            |                                                                                                      |                                                |  |  |
| Client:                                                                                                    | Green Geotech                              | nics Pty Ltd                  |                                     | Report No                                                                                | : 241-607-C                                                                                          | BR                                             |  |  |
| Client Address:                                                                                            | Po Box 3244, R                             | ouse Hill, N                  | SW, 2155                            | Report Da                                                                                | te: 12/06/202                                                                                        | 12/06/2024                                     |  |  |
| Project:                                                                                                   | Material Testin                            | g                             |                                     | Report Pag                                                                               | L                                                                                                    |                                                |  |  |
| Works Component:                                                                                           | 11 Greenbridge                             | •                             |                                     | Report Page:Page 1 of 1Project No:241                                                    |                                                                                                      |                                                |  |  |
| Material Used(Source):                                                                                     | Insitu                                     |                               |                                     | Test Request/Order: <b>GG11529</b>                                                       |                                                                                                      |                                                |  |  |
| Material Description:                                                                                      | Silty Clay                                 |                               |                                     | Lot Number: GG11529                                                                      |                                                                                                      |                                                |  |  |
| Lot Boundaries:                                                                                            | -                                          |                               |                                     | ITP/PCP Number: -                                                                        |                                                                                                      |                                                |  |  |
| Lab Test Date/s:                                                                                           | Laboratory test                            | ting 01/06/2                  | 2024 to 12/06/2024                  | Control Line: N/A                                                                        |                                                                                                      |                                                |  |  |
| Sample Number                                                                                              | Sample Date                                | 0 , ,                         | inage/Location                      | Offset                                                                                   | Level of Test                                                                                        | Test Depth                                     |  |  |
| 44017                                                                                                      | 27/05/2024                                 |                               | N/A                                 | N/A                                                                                      | BH7                                                                                                  | 0.6-0.8                                        |  |  |
|                                                                                                            |                                            |                               |                                     |                                                                                          |                                                                                                      |                                                |  |  |
| Parameters                                                                                                 |                                            | Units                         | Test Results                        |                                                                                          | Information                                                                                          |                                                |  |  |
| Pretreatment Regime                                                                                        |                                            |                               | No Pretreatment                     |                                                                                          |                                                                                                      |                                                |  |  |
| Portion Retained on A                                                                                      |                                            | %                             | 3% on 19mm                          |                                                                                          | Retained material exc                                                                                |                                                |  |  |
| Material Plasticity (Liq                                                                                   | uid Limit)                                 |                               | Low (Less than 35%)                 |                                                                                          | By Technician's Assess                                                                               | sment                                          |  |  |
| Sample Curing Time                                                                                         |                                            | hrs                           | MDD = 45 hrs                        | CBR = 147 hrs                                                                            |                                                                                                      |                                                |  |  |
| Soil Particle Density                                                                                      |                                            | t/m3                          | 2.67                                |                                                                                          | Estimated value only*                                                                                | *                                              |  |  |
| Maximum Dry Density                                                                                        | (MDD)                                      | t/m3                          | 1.659                               |                                                                                          | Standard compactive                                                                                  | effort                                         |  |  |
| Optimum Moisture Co                                                                                        | ontent (OMC)                               | %                             | 22.1                                |                                                                                          |                                                                                                      |                                                |  |  |
| Field/Prep Moisture Co                                                                                     | ontent                                     | %                             | Field %                             | Prep 22.6 %                                                                              | Passing 19.0mm porti                                                                                 | on                                             |  |  |
| Compaction Moisture                                                                                        | Content                                    | %                             | Achieved 21.9 %                     | LMR = 99.0%                                                                              | Specified LMR = 100%                                                                                 |                                                |  |  |
| Compaction Dry Densi                                                                                       | ity                                        | t/m3                          | Achieved 1.65 t/m3                  | LDR = 99.5%                                                                              | Specified LDR = 100%                                                                                 |                                                |  |  |
| Surcharge Load                                                                                             |                                            | kg                            | 4.5                                 | •                                                                                        |                                                                                                      |                                                |  |  |
| Period of Soaking                                                                                          |                                            | Days                          | Soaked - 4 Days                     |                                                                                          | Dry Density (after soa                                                                               | king) = 1.65 t/m3.                             |  |  |
| Specimen Swell                                                                                             |                                            | %                             | 0.0                                 |                                                                                          | ,, (                                                                                                 | 3, 554,                                        |  |  |
| Moisture Content - To                                                                                      | p 30mm                                     | %                             | 24.0                                |                                                                                          | After Penetration                                                                                    | enetration                                     |  |  |
| Moisture Content - Re                                                                                      | •                                          | %                             | 22.9                                |                                                                                          | After Penetration                                                                                    |                                                |  |  |
| Dry Density Vs                                                                                             | ů.                                         | ontent                        | Load-Pe                             | netration Curve                                                                          | Material CBR Value (%)                                                                               |                                                |  |  |
| Мо                                                                                                         | 0 21.0 22.0 23.0 24.<br>isture Content (%) |                               |                                     | 4 5 6 7 8 9 10 11 12 13<br>Penetration (mm)                                              | 5.<br>California Bea<br>CBR <sub>2.5</sub> =<br>CBR <sub>5.0</sub> =<br>Including an Applie<br>0.0 m | aring Ratios<br>5.0<br>5.0<br>ed Correction of |  |  |
| Sampling & Test Metho                                                                                      | ods (Results relate                        | only to the it                | ems sampled/tested)                 | Report R                                                                                 | emarks & Endorsement                                                                                 |                                                |  |  |
| AS 1289.1.1: (2001)Prepa<br>AS1289.2.1.1: (2005) Mo<br>AS1289.5.1.1: (2017)Dry<br>AS1289.6.1.1: (2014)Cali | oisture Content of a Density/Moisture      | Soil (Oven D<br>content relat | Drying)<br>ion of a soil (Standard) | Accredited for compliance with<br>ISO/IEC 17025 - Testing.<br>NATA Accreditation number: | Issued By:Appro<br>20078                                                                             | A.Clout<br>ved Signatory                       |  |  |
| ** NATA accreditati                                                                                        | on does not cover                          | the perform                   | ance of this service                |                                                                                          | WE                                                                                                   | 011 - Rev 31, 06/02/2023                       |  |  |



#### **CERTIFICATE OF ANALYSIS** Work Order : ES2417715 Page : 1 of 5 Client Laboratory : GREEN GEOTECHNICS PTY LTD : Environmental Division Sydney Contact : MR MATTHEW GREEN Contact : Customer Services ES Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : PO BOX 3244 ROUSE HILL 2155 Telephone Telephone : +61-2-8784 8555 :----**Date Samples Received** Project : GG 11529 : 29-May-2024 16:55 Order number **Date Analysis Commenced** : 31-May-2024 : ----C-O-C number Issue Date : -----: 04-Jun-2024 17:27 Sampler : JL Site :----

Accreditation No. 825 Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

: EN/222

: 12

: 12

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

### Signatories

Quote number

No. of samples received

No. of samples analysed

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories | Position                    | Accreditation Category             |
|-------------|-----------------------------|------------------------------------|
| Ankit Joshi | Senior Chemist - Inorganics | Sydney Inorganics, Smithfield, NSW |



### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

\* = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.

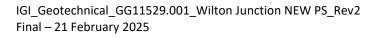


### Analytical Results

| Sub-Matrix: SOIL<br>(Matrix: SOIL)   |            |        | Sample ID      | GG11529/S1        | GG11529/S2        | GG11529/S3        | GG11529/S4        | GG11529/S5        |
|--------------------------------------|------------|--------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                      |            | Sampli | ng date / time | 27-May-2024 00:00 |
| Compound                             | CAS Number | LOR    | Unit           | ES2417715-001     | ES2417715-002     | ES2417715-003     | ES2417715-004     | ES2417715-005     |
|                                      |            |        |                | Result            | Result            | Result            | Result            | Result            |
| EA002: pH 1:5 (Soils)                |            |        |                |                   |                   |                   |                   |                   |
| pH Value                             |            | 0.1    | pH Unit        | 6.2               | 5.5               | 5.8               | 5.6               | 5.9               |
| EA010: Conductivity (1:5)            |            |        |                |                   |                   |                   |                   | ·                 |
| Electrical Conductivity @ 25°C       |            | 1      | µS/cm          | 31                | 110               | 34                | 75                | 51                |
| EA055: Moisture Content (Dried @ 105 | 5-110°C)   |        |                |                   |                   |                   |                   | ·                 |
| Moisture Content                     | —-         | 0.1    | %              | 20.1              | 8.3               | 17.8              | 11.4              | 22.4              |
| ED040S : Soluble Sulfate by ICPAES   |            |        |                |                   |                   |                   |                   |                   |
| Sulfate as SO4 2-                    | 14808-79-8 | 10     | mg/kg          | 30                | 60                | <10               | 40                | 90                |
| ED045G: Chloride by Discrete Analyse | er         |        |                |                   |                   |                   |                   | ·                 |
| Chloride                             | 16887-00-6 | 10     | mg/kg          | 30                | 100               | 20                | 60                | <10               |



### Analytical Results


| Sub-Matrix: SOIL<br>(Matrix: SOIL)    |            |        |                |                   | GG11529/S7        | GG11529/S8        | GG11529/S9        | GG11529/S10       |
|---------------------------------------|------------|--------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                       |            | Sampli | ng date / time | 27-May-2024 00:00 |
| Compound                              | CAS Number | LOR    | Unit           | ES2417715-006     | ES2417715-007     | ES2417715-008     | ES2417715-009     | ES2417715-010     |
|                                       |            |        |                | Result            | Result            | Result            | Result            | Result            |
| EA002: pH 1:5 (Soils)                 |            |        |                |                   |                   |                   |                   |                   |
| pH Value                              |            | 0.1    | pH Unit        | 5.8               | 6.5               | 6.2               | 5.6               | 5.8               |
| EA010: Conductivity (1:5)             |            |        |                |                   |                   |                   |                   |                   |
| Electrical Conductivity @ 25°C        |            | 1      | µS/cm          | 48                | 34                | 49                | 58                | 32                |
| EA055: Moisture Content (Dried @ 105- | -110°C)    |        |                |                   |                   |                   |                   |                   |
| Moisture Content                      |            | 0.1    | %              | 20.0              | 21.2              | 19.0              | 16.2              | 18.9              |
| ED040S : Soluble Sulfate by ICPAES    |            |        |                |                   |                   |                   |                   |                   |
| Sulfate as SO4 2-                     | 14808-79-8 | 10     | mg/kg          | 60                | 50                | 20                | 40                | 50                |
| ED045G: Chloride by Discrete Analyse  | r – I –    |        |                |                   |                   |                   | ·                 |                   |
| Chloride                              | 16887-00-6 | 10     | mg/kg          | 40                | 10                | 70                | 150               | <10               |



### Analytical Results

| Sub-Matrix: SOIL                    |                      |     | Sample ID | GG11529/S11   | GG11529/S12   |          | <br> |
|-------------------------------------|----------------------|-----|-----------|---------------|---------------|----------|------|
| (Matrix: SOIL)                      |                      |     |           |               |               |          |      |
|                                     | Sampling date / time |     |           |               |               | <u> </u> | <br> |
| Compound                            | CAS Number           | LOR | Unit      | ES2417715-011 | ES2417715-012 |          | <br> |
|                                     |                      |     |           | Result        | Result        |          | <br> |
| EA002: pH 1:5 (Soils)               |                      |     |           |               |               |          |      |
| pH Value                            |                      | 0.1 | pH Unit   | 6.0           | 6.1           |          | <br> |
| EA010: Conductivity (1:5)           |                      |     |           |               |               |          |      |
| Electrical Conductivity @ 25°C      |                      | 1   | µS/cm     | 35            | 23            |          | <br> |
| EA055: Moisture Content (Dried @ 10 | 5-110°C)             |     |           |               |               |          |      |
| Moisture Content                    |                      | 0.1 | %         | 21.4          | 17.3          |          | <br> |
| ED040S : Soluble Sulfate by ICPAES  |                      |     |           |               |               |          |      |
| Sulfate as SO4 2-                   | 14808-79-8           | 10  | mg/kg     | 60            | 30            |          | <br> |
| ED045G: Chloride by Discrete Analys | er                   |     |           |               |               |          |      |
| Chloride                            | 16887-00-6           | 10  | mg/kg     | <10           | 10            |          | <br> |

# APPENDIX C CSIRO GUIDELINE





# Foundation Maintenance and Footing Performance: A Homeowner's Guide



BTF 18 replaces Information Sheet 10/91

Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the homeowner to identify the soil type in order to ascertain the measures that should be put in place in order to ensure that problems in the foundation soil can be prevented, thus protecting against building movement.

This Building Technology File is designed to identify causes of soil-related building movement, and to suggest methods of prevention of resultant cracking in buildings.

### Soil Types

The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups – granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to saturation and swell/shrink problems.

Classifications for a given area can generally be obtained by application to the local authority, but these are sometimes unreliable and if there is doubt, a geotechnical report should be commissioned. As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the amount of swell and shrinkage they experience with variations of water content. The table below is Table 2.1 from AS 2870, the Residential Slab and Footing Code.

### **Causes of Movement**

### Settlement due to construction

There are two types of settlement that occur as a result of construction:

- Immediate settlement occurs when a building is first placed on its foundation soil, as a result of compaction of the soil under the weight of the structure. The cohesive quality of clay soil mitigates against this, but granular (particularly sandy) soil is susceptible.
- Consolidation settlement is a feature of clay soil and may take place because of the expulsion of moisture from the soil or because of the soil's lack of resistance to local compressive or shear stresses. This will usually take place during the first few months after construction, but has been known to take many years in exceptional cases.

These problems are the province of the builder and should be taken into consideration as part of the preparation of the site for construction. Building Technology File 19 (BTF 19) deals with these problems.

### Erosion

All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10% or more can suffer from erosion.

### Saturation

This is particularly a problem in clay soils. Saturation creates a boglike suspension of the soil that causes it to lose virtually all of its bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume – particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should normally be the province of the builder.

### Seasonal swelling and shrinkage of soil

All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below). The degree of increase varies considerably between different clays, as does the degree of decrease during the subsequent drying out caused by fair weather periods. Because of the low absorption and expulsion rate, this phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics.

The swelling of soil creates an upward force on the footings of the building, and shrinkage creates subsidence that takes away the support needed by the footing to retain equilibrium.

### Shear failure

This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:

- Significant load increase.
- Reduction of lateral support of the soil under the footing due to erosion or excavation.
- In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

| GENERAL DEFINITIONS OF SITE CLASSES |                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Class                               | Foundation                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| А                                   | Most sand and rock sites with little or no ground movement from moisture changes                                                                                                                                                                      |  |  |  |  |  |  |
| S                                   | Slightly reactive clay sites with only slight ground movement from moisture changes                                                                                                                                                                   |  |  |  |  |  |  |
| M                                   | Moderately reactive clay or silt sites, which can experience moderate ground movement from moisture changes                                                                                                                                           |  |  |  |  |  |  |
| Н                                   | Highly reactive clay sites, which can experience high ground movement from moisture changes                                                                                                                                                           |  |  |  |  |  |  |
| E                                   | Extremely reactive sites, which can experience extreme ground movement from moisture changes                                                                                                                                                          |  |  |  |  |  |  |
| A to P                              | Filled sites                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| Р                                   | Sites which include soft soils, such as soft clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soils subject to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise |  |  |  |  |  |  |

### Tree root growth

Trees and shrubs that are allowed to grow in the vicinity of footings can cause foundation soil movement in two ways:

- · Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.
- Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

### **Unevenness of Movement**

The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- Differing compaction of foundation soil prior to construction.
- · Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a footing that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear failure

Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Swelling gradually reaches the interior soil as absorption continues. Shrinkage usually begins where the sun's heat is greatest.

### Effects of Uneven Soil Movement on Structures

### **Erosion and saturation**

Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).

Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

### Seasonal swelling/shrinkage in clay

Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers and joists, the floor can be bouncy. Externally there may be visible dishing of the hip or ridge lines.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.



As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's effect is strongest. This has the effect of lowering the external footings. The doming is accentuated and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the interior and doming will be accentuated, whereas where summers are dry and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

### Movement caused by tree roots

In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

### Complications caused by the structure itself

Most forces that the soil causes to be exerted on structures are vertical - i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The net result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

### Effects on full masonry structures

Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points. It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased.

With local shear or erosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Upheaval caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to also exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred.

#### Trees can cause shrinkage and damage

The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

### Effects on framed structures

Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend to be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation cause a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

### Effects on brick veneer structures

Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

### Water Service and Drainage

Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken rubble is used as fill. Water that runs along these trenches can be responsible for serious erosion, interstrata seepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem.

Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:

 Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves etc.

- Corroded guttering or downpipes can spill water to ground.
- Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing large-scale problems such as erosion, saturation and migration of water under the building.

### Seriousness of Cracking

In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. The table below is a reproduction of Table C1 of AS 2870.

AS 2870 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

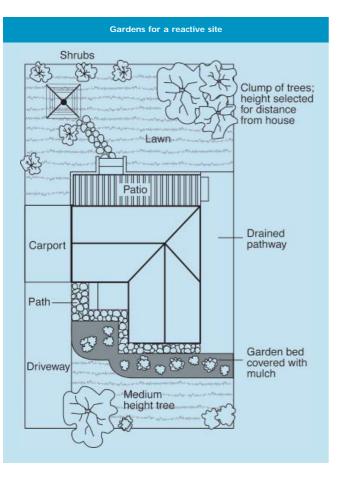
### Prevention/Cure

### Plumbing

Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, the remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible, and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to create erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the water will either pond or flow along the bottom of the trench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation's ability to support footings or even gain entry to the subfloor area.

### Ground drainage

In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.


It is, however, sometimes necessary when attempting to prevent water migration that testing be carried out to establish watertable height and subsoil water flows. This subject is referred to in BTF 19 and may properly be regarded as an area for an expert consultant.

### Protection of the building perimeter

It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plants, shrubs and trees causes some of the most serious water problems.

For this reason, particularly where problems exist or are likely to occur, it is recommended that an apron of paving be installed around as much of the building perimeter as necessary. This paving

| CLASSIFICATION OF DAMAGE WITH REFERENCE TO WALLS                                                                                                                                                                                        |                                                              |                    |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------|--|--|--|--|--|--|
| Description of typical damage and required repair                                                                                                                                                                                       | Approximate crack width<br>limit (see Note 3)                | Damage<br>category |  |  |  |  |  |  |
| Hairline cracks                                                                                                                                                                                                                         | <0.1 mm                                                      | 0                  |  |  |  |  |  |  |
| Fine cracks which do not need repair                                                                                                                                                                                                    | <1 mm                                                        | 1                  |  |  |  |  |  |  |
| Cracks noticeable but easily filled. Doors and windows stick slightly                                                                                                                                                                   | <5 mm                                                        | 2                  |  |  |  |  |  |  |
| Cracks can be repaired and possibly a small amount of wall will need<br>to be replaced. Doors and windows stick. Service pipes can fracture.<br>Weathertightness often impaired                                                         | 5–15 mm (or a number of cracks<br>3 mm or more in one group) | 3                  |  |  |  |  |  |  |
| Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Window and door frames distort. Walls lean or bulge noticeably, some loss of bearing in beams. Service pipes disrupted | 15–25 mm but also depend<br>on number of cracks              | 4                  |  |  |  |  |  |  |



should extend outwards a minimum of 900 mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paving should be no less than 100 mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building – preferably not uphill from it (see BTF 19).

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

### Condensation

In buildings with a subfloor void such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

*Warning:* Although this Building Technology File deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders.
- Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living areas. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory ailments.

### The garden

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order.

Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

### **Existing trees**

Where a tree is causing a problem of soil drying or there is the existence or threat of upheaval of footings, if the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. If it is not possible to remove the relevant roots without damage to the tree, an application to remove the tree should be made to the local authority. A prudent plan is to transplant likely offenders before they become a problem.

### Information on trees, plants and shrubs

State departments overseeing agriculture can give information regarding root patterns, volume of water needed and safe distance from buildings of most species. Botanic gardens are also sources of information. For information on plant roots and drains, see Building Technology File 17.

### Excavation

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

### Remediation

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

Where isolated footings rise and fall because of swell/shrink effect, the homeowner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.

This BTF was prepared by John Lewer FAIB, MIAMA, Partner, Construction Diagnosis.

The information in this and other issues in the series was derived from various sources and was believed to be correct when published.

The information is advisory. It is provided in good faith and not claimed to be an exhaustive treatment of the relevant subject.

Further professional advice needs to be obtained before taking any action based on the information provided.

Distributed by

CSIRO PUBLISHING PO Box 1139, Collingwood 3066, Australia Freecall 1800 645 051 Tel (03) 9662 7666 Fax (03) 9662 7555 www.publish.csiro.au Email: publishing.sales@csiro.au

© CSIRO 2003. Unauthorised copying of this Building Technology file is prohibited

## **APPENDIX B**

## **MINE SUBSIDENCE GUIDELINE 8**





# **Surface Development Guideline 8**

nsw.gov.au/departments-and-agencies/subsidence-advisory/subsidence-advisory- Printed: 15 January publications/surface-development-guideline-8 2024

This page explains the requirements for building on a property in a Mine Subsidence District that has been assigned Guideline 8, it does not include proposed subdivisions.

On this page

- <u>Allowable residential construction</u>
- Who can assess whether development complies with Guideline 8
- **Disclaimer**

Guideline 8 applies to properties that are not undermined, and future mining is not likely. These properties are assessed as not being at risk from mine subsidence.

## Allowable residential construction

Guideline 8 does not apply restrictions on development for these properties.

## Who can assess whether development complies with Guideline 8

Applications for proposed development that complies with this Guideline can be assessed by Subsidence Advisory, the relevant council or a registered certifier as defined in the Environmental Pla nning and Assessment Act 1979 (https://www.legislation.nsw.gov.au/view/html/inforce/current/act -1979-203).

## Disclaimer

Please note that Subsidence Advisory's Surface Development Guidelines are subject to change.